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Preface 

Turbulence modeling is a complex subject and methods developed to deal 
with it are numerous and diverse. Many schools of thought exist and com­
munication and understanding among them is often lacking. Comparisons 
may be odious but they need to be made and explored if a scientific disci­
pline is to progress. This is why Multiscale and Multiresolution Approaches 
in Turbulence is so timely. It brings together many topics not found in one 
place before. A number have appeared only in very recent research papers 
and here grace the pages of a book for the first time. The proximity invites 
comparisons and suggests a greater unification of turbulence methodol­
ogy than is at first apparent. The subject of the work is modeling, but 
the dual themes, expressed in the title, are multiscale and multiresolution 
approaches. These words conjure up fundamental and computational con­
cepts, and, indeed, the text presents both in an integrated way. Multiscale 
and multiresolution methods have attracted enormous recent interest in a 
variety of scientific disciplines, and they seem to provide the ideal frame­
work for organizing much, if not all, contemporary turbulence research. 

The treatment begins in Chapter 1 with a brief introduction to tur­
bulence ideas, including randomness, coherent structures, turbulent length 
and time scales, the Kolmogorov energy cascade, and transfers of energy 
between scales. In Chapter 2, the enormous cost of direct numerical solu­
tion of the Navier-Stokes equations is used to motivate the practical need 
for modeling. This amounts to approximating the effects of unrepresented 
scales and the basic strategies are described next, namely, Reynolds Av­
eraged Numerical Simulation (RANS) and Large Eddy Simulation (LES), 
and are followed by a discussion of multilevel methods. Chapter 3 deals 
with statistical multiscale concepts and various RANS models are pre­
sented, including eddy-viscosity and Reynolds-stress models. Chapter 4 

vii 
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is concerned with multiscale subgrid models and self-adaptivity in LES. 
Fundamental ideas are introduced, along with the Germano identity, dy­
namic models, self-similarity, and variational multiscale (VMS) methods. 
Chapter 5 presents structured multiscale subgrid models for LES based 
on the estimation of small scales. Various reconstruction techniques are 
described, including deconvolution, multifractal, and multigrid, in addition 
to zonal multigrid/multidomain methods. Unsteady turbulence simulations 
on self-adaptive grids are discussed in Chapter 6, covering dynamic multi­
level and adaptive wavelet methods, and DNS and LES with adaptive mesh 
refinement (AMR). Global hybrid RANS/LES approaches are presented in 
Chapter 7, including unsteady statistical modeling, blending, and Detached 
Eddy Simulation (DES). The theoretical basis of zonal RANS/LES meth­
ods commences Chapter 8 and is followed by a discussion of inlet data 
generation and turbulence reconstruction techniques. 

This text is a very important addition to the literature on turbulence. It 
provides an excellent introduction to many areas of contemporary research 
and it systematically organizes many seemingly disparate approaches within 
its dual themes of multiscale and multiresolution methodology. Researchers 
will find it useful as a guide to the strengths and weaknesses of current tech­
nology, a classification system within which new developments will likely 
fit, and a hierarchy for locating methods to compare with. Student and 
expert alike will benefit greatly by reading it from cover to cover, and will 
also find it a reference work of lasting value. 

Thomas J.R. Hughes, 
University of Texas, Austin, 
November 2005. 
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Chapter 1 

A Brief Introduction to Turbulence 

The scope of this chapter is to recall some of the bases of the turbulence 
theory and its statistical analysis. The emphasis is put on turbulent flow 
features that are of primary interest for turbulent flow prediction and mod­
elling: turbulent scales, Kolmogorov cascade, coherent structures in shear 
flows, turbulence production and dissipation. The reader interested in more 
in-depth discussions of the subject is referred to several reference textbooks: 
[Chassaing, 2000; Davidson, 2004; Hinze, 1959; Lesieur, 1990; Piquet, 1999; 
Tennekes and Lumley, 1974]. 

1.1 Common Features of Turbulent Flows 

1.1.1 Introductory concepts 

Most fluid flows occurring in nature as well as in engineering applications 
are turbulent. Consequently, it does not take any further comment to 
emphasize that numerical simulations of turbulent flows are of outstand­
ing importance for the scientific as well as for the engineering community. 
Even though many turbulent flows can be easily observed, it is very diffi­
cult to give an accurate and accepted definition of turbulence. However, 
researchers and engineers generally agree on some characteristics of turbu­
lent flows. For this purpose, let us observe what happens in the turbulent 
flow past a sphere (see Fig. 1.1) and list the most generally agreed features. 

•Unpredictability 
The irregularity of the flow downstream separation makes a deterministic 
description of the motion detailed as a function of time and space coordi­
nates impossible. Randomness is clearly shown in the above figure and is a 
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Fig. 1.1 Flow past at sphere at Reo = —fi— = 2.104. Note its continuum of scales 
from large to small ones which is one of the most fundamental aspects of turbulent fluid 
flows. Photograph by H. Werle. Courtesy of J. Delery, ONERA, France. 

characteristic of all turbulent flows. This explains why statistical methods 
are often considered. 

•Three-dimensionality of the vorticity fluctuations 
The flow past the sphere is obviously three-dimensional and highly un­
steady. Note that the shear layer emanating from the separation line on 
the cylinder is a region of strong coherent vorticity. In general, vorticity 
dynamics plays an important role in the analysis of turbulent flows. 

•Diffusivity 
Spreading of velocity fluctuations becomes stronger as the distance from 
separation increases. The diffusivity of turbulence is one of the most im­
portant properties as far as engineering applications are concerned (mixing 
enhancement, heat and mass transfer). 
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•Broad spectrum 
Turbulent fluctuations occur over a wide range of excited length and time 
scales in physical space leading to broadband spectra in wave number space. 

In his book, Hinze [Hinze, 1959] suggests that: 

to describe a turbulent motion quantitatively, it is neces­
sary to introduce the notion of scale of turbulence: a cer­
tain scale in time and a certain scale in space. 

In other words, Turbulence is a multi-scale problem with a highly non-linear 
coupling between these scales. This picture illustrates why the accurate 
prediction of turbulent flows is such a difficult problem. 

1.1.2 Randomness and coherent structure in turbulent 
flows 

Though turbulent flows exhibit broad-band spectra, there is evidence from 
Fig. 1.1 that high-Reynolds number turbulent flows are far from being to­
tally disorganized. What strikes us when looking at the shear layer down­
stream separation is the roll-up of eddies which can be found downstream 
with approximatively the same shape. Such eddies preserving a certain 
spatial organization are called coherent structures and retain their identity 
for much longer times than the eddy turn-over time characteristic of the 
turbulent fluctuation. 

There are still controversies regarding the definition of coherent struc­
tures (see [Haller, 2005]) but there is general agreement on their existence 
and importance in the transport and mixing phenomena. Therefore the 
identification of coherent vortices plays an important role in the analysis 
of turbulent flows. Most common definitions are associated with vortical 
motion (see [Dubief, 2000] for a review) and turbulent structures are often 
exhibited by showing a positive iso-value of the criterion Q ([Hunt et al, 
1988]). Vortex tubes are defined as the regions where the velocity gradient 
tensor Vu is positive: 

Q = i ( f i : n - S : S ) (1.1) 

where $7 = \ (Vu —* Vu) is the vorticity tensor and S = \ (Vu +* Vu) is 
the rate of strain tensor. 
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Examples of coherent structures include for instance the horseshoe vor­
tices observed in turbulent boundary layers (see Fig. 1.2) and mixing layers 
(see Fig. 1.3), and the vorticity tubes (often called filaments or worms) ob­
served in statistically homogeneous flows (see Fig. 1.4). 

Fig. 1.2 Wind-tunnel visualization of large-scale structures in the outer layer of a tur­
bulent boundary layer. Courtesy of M. Stanislas, IMFL, France. 

Turbulent flows are neither deterministic nor fully random since the oc­
currence of coherent structures reflects the existence of finite characteristic 
scales of spatial correlation as discussed in the next section. 



A Brief Introduction to Turbulence 5 

Fig. 1.3 Snapshot of the Q criterion highlighting turbulent structures in an axisymmet-
ric supersonic wake (Zonal Detached-Eddy-Simulation on a 20.106 points grid). Note 
the streamwise array of hairpin vortices, one hairpin triggering another. Courtesy of F. 
Simon, ONERA, France. 

1.2 Turbulent Scales and Complexity of a Turbulent Field 

1.2.1 Basic equations of turbulent flow 

The starting point is the Navier-Stokes model for a Newtonian1 incom­
pressible fluid with dynamic viscosity fi, in the absence of body forces: 

V.u = 0 (1.2) 

p (^ + u . V u j = - V P + /iV2u (1.3) 

where u denotes the velocity field, p the density and P the pressure field. 
Note also that we have to add initial and boundary conditions to get a 
well-posed problem. The non-linear term appearing in the Left-Hand Side 

1Most of fluids of interest for aerodynamic-oriented studies obey Newton's law of 
viscosity which relates the viscous stress tensor TV to the velocity strain: 

rv = 2pvS where S = - (Vu + ' Vu) . 
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Pig. 1.4 Instantaneous vorticity contours in isotropic turbulence (Large-Eddy Simu­
lation in a periodic cube on a 1283 points grid). Note the worm-like structure of the 
vorticity field. Courtesy of E. Gamier, ONERA, France. 

(LHS) of Eq. 1.3 leads to most of the complex and rich phenomena of fluid 
mechanics. In particular, this quadratic term is the reason why fluids be­
come turbulent. When this term gets much larger than the diffusive term2, 
the flow becomes unstable and large flow structures break up in smaller 
and smaller eddies until these are diffused into heat by viscous effects. This 
important process is called energy cascade and is briefly introduced in § 1.3. 

2 The ratio of the convective and diffusive term is called Reynolds number. Let us 
consider a flow characterized by a mean velocity Uo and a typical length scale D (e.g. 
comparable to the geometry of surrounding flow, like the diameter of the sphere in Fig. 
1.1), the non-linear term in Eq. 1.3 can be estimated as U§/D and the viscous term as 
vUo/D2. This ratio is then: 

ReD = ^ 
v 

There exists a critical value Re*D of ReD above which the flow becomes turbulent while 
remaining laminar for ReD < Re*D. The value of Re*D is case-dependent and highly 
influenced by the level of turbulence of the incoming flow. 
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It is now worth looking at the energy relation that occurs in turbulent 
flows of an incompressible fluid. By taking the product of Eq. 1.3 with u 
(by noting u2 — u.u) and after some algebraic manipulations, we get: 

d(u2/2) 

at = -v. u -V. u V. 
1 
- U . T V 

(I) advection (II) work by pressure forces (HI) work by viscous stresses 

- 2 i / S : S . (1.4) 

(IV)>0 

The LHS represents the local change of kinetic energy per unit mass and 
time. The term (I)+(II) may be interpreted either as the work due to the 
total pressure P+ \pu2 (per unit mass and time) or as the change in trans­
port of the total energy E = ~ + \u2 (per unit mass) through advection 
by the velocity u. Term (III) represents the work done per unit mass and 
time by the viscous shear stresses of the turbulent motion. Furthermore, 
this equation tells us that the last term (IV) on the RHS represents the 
rate of dissipation of mechanical energy per unit mass to heat: 

e = 2z/S:S. (1.5) 

By noting w = V x u, the vorticity field, e can also be expressed as3: 

e = vJ2 (1.7) 

CI = u>2/2 is called the enstrophy. 

Note that Eqs. 1.5 and 1.7 indicate firstly that turbulence produces 
gradients and vorticity and secondly that the rate at which energy is dissi­
pated is particularly pronounced in regions where the instantaneous velocity 
gradients are large e.g. in the smallest eddies. This important feature of 
turbulent flows is briefly introduced in § 1.3. 

3Noting that i/u. (V 2 u) = —v (V X u) + V. [vu X (V X u)], Eq. 1.4 can be rewritten 

d(u2/2) 

dt 

i2 P 
1 ] u + i / ( V x u ) x u 

2 p 
- v (V x u ) 2 

dissipation 

(1.6) 
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1.2.2 Defining turbulent scales 

Although the instantaneous velocity field u (x, t) exhibits a random and un­
predictable character, it is fortunately possible to discern distinct statistical 
quantities such as averaged values. This important feature of the velocity 
fluctuations (both in time and space) reflect the existence of characteristic 
scales of statistical correlation. Therefore, we need to introduce some useful 
measures of the different scales describing the state of turbulent flows. To 
this end, there exist two quantities commonly used: 
• the velocity correlation function 
• the energy spectrum 

In order to extract some statistical information of the flow, the instan­
taneous velocity u is split into a mean value u and a fluctuating value as 
follows: 

u = u + u' (1.8) 

where u is the random component of motion and consists at any instant 
of random collection of vortices. The above operation may be seen as a 
scale separation between the mean and the fluctuating field and this scale 
separation will be fully discussed in the next chapter. 

For ease of explanation, we consider only the one-dimensional fluctua­
tion of the velocity vector u (x, t). The spatio-temporal correlation function 
is given by: 

„ / ' ' \ u (x,t)u (x't') 
R(X,X ,t,t) = y J , • ( i - 9 ) v ' u (x,t) u (x,t) 

In case of an homogeneous statistically stationary flow, the auto-correlation 
functions (either in space or time) can be expressed as: 

R,t t N =
 u' (x,t0)u (x + £,t0) 

u (x,t0)u (x,t0) 

R{xo,r) = U ' ^ ' t ) u ' ^ t + T) (1.10) 
u (xo,t)u (xo,t) 

where £ = x — x, r = t —t and x0 (respectively t0) denote a given loca­
tion (respectively a given instant). The typical shape of these correlation 
functions is given in Fig. 1.5. 
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WfotJ u'(x0 + $ y or u'(x0 t0 +r) 

%or r 

LorT or T 

Fig. 1.5 Shape of the correlation function for a turbulent flow and Taylor's scales. The 
two filled surfaces are equal. 

The integral spatial and temporal scales (referred sometimes as Taylor's 
macro-scales) are defined as: 

L 

T 

/»oo 

/ R(X,T] 
Jo 

/>oo 

/ R(Z,t) 
Jo 

dr 

de. 

(l.n) 

(1.12) 

The integral scale of turbulence L provides a measure of the extent of the 
region over which velocities are appreciably correlated, e.g. the size of the 
large eddies carrying the energy of the turbulent motion. Similarly T pro­
vides a measure of the duration over which velocities are correlated, e.g. 
the duration of an eddy turn-over. For obvious reasons, T is sometimes 
called Eulerian integral time scale. 

As outlined in the beginning of this section, one can also define the 
length scale of the energy-containing eddies thanks to the energy spectrum 
in wave number domain which indicates how the energy k = \uiui is dis­
tributed over length scales (or inverse wave number). A typical shape of 
this energy spectrum is given in Fig. 1.6. 
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& = j E{K)CIK 

K 

Fig. 1.6 Typical shape of the energy spectrum (e.g. energy spectral density function) 
in wave number space for a fully turbulent flow. A flow is called fully turbulent when it 
has reached a state in which the statistical quantities change slowly with respect to time 
or downstream distance. Both scales are logarithmic. 

The wave number KL corresponding to the peak in the spectrum defines 
approximatively the length scale of the energy-containing eddies: 

L = (1.13) 

Note that the energy spectrum decreases with increasing wave numbers. 
In other words, most of the energy is at low wave numbers or at large scales 
in physical space. Therefore the velocity scale of the largest eddies can be 
characterized by the total kinetic energy as follows: 

u0 2k (1.14) 

and the average size of the energy-containing eddies as follows: 

f oo E(K) 
CLK 

/o°° # ( « ) < * « ' 
(1.15) 
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Another important length scale can be formed from the correlation func­
tion. Indeed, one can show that the correlation function admits the oscula-
tion parabola (P) defined by 1Z = 1 — j ^ in the limit as £ —> 0. Therefore, 
one can also define from the correlation functions, Taylor's micro-scales: 

v s ' ; ' - 1.16) 
de JT=0 x2(ty 

A is called micro-scale because it is defined by the curvature at the origin of 
the velocity correlation function, thus depending on the smallest eddies4. 
Note that the Taylor microscale is the characteristic spatial scale of the 
velocity gradients. 

We can also define a micro time-scale in the same way as Taylor's micro-
scale was introduced: 

*R{*,T)\ _ - ( 1 1 9 ) 

dr* Jx=Q \2(xy 

Nevertheless, the size of the smallest eddies populating a turbulent flow 
is not equal to A. Indeed, let us denote as VK, LK and TK the velocity, length 
and time scales of the smallest turbulent structures. To obtain an expression 
for LK, let us assume that at smallest scales, the convection and the viscous 
term in Eq. 1.3 are balanced. Assuming respectively u • Vu « VK/LK and 
i/V2u sa VVK/LK we get: 

ReK = VJSLJ£ = i. (1.20) 
v 

Combining Eq. 1.5 and a dimensional analysis, the rate of dissipation of 

4In the framework of isotropic and homogeneous turbulence studies, it is common to 
express the dissipation rate £ as a function of Taylor's micro-scale considering that the 
rate of strain of the dissipative scales can be evaluated by S ~ u /A. Taylor's microscale 
can thus be denned as: 

A2 = - ^ — (1.17) 
du 

and assuming e = 2i/ ( ^ - ) , we get: 

'2 

£ = 2v — . (1.18) 

This relation shows that the Taylor microscale characterizes the dissipative phenomena. 
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kinetic energy can be expressed as: 

v 

combining these expressions with the additional relation VK = ^ we find: 

(1.21) 
K 

TK 

l A 

LK = — vK = {ue)* (1.22) 
£ / £4 

The scales LK and VK are called the Kolmogorov micro-scales of turbulence 
and characterize the energy-dissipating eddies. 

It is now worth giving the relationships between the integral, Taylor and 
Kolmogorov length scales. For this purpose, let us consider the Reynolds 
number characterizing the largest scale of the turbulent motion: 

ReL = ^ - (1.23) 

The rate of dissipation of kinetic energy can also be expressed (see 1.3.1) 
with wo and L as follows: 

* « ^ . (1.24) 

Combining Eqs. 1.24 with 1.23 and 1.18 yields: 

L 

A 

1 

A 

:BxTL* (1.25) 

Re~h^ (1.26) 

RelK (1.27) 

Thus the Taylor micro-scale scale5 lies somewhere between the Kolmogorov 
micro-scale, LK, and the integral length scale, L. Furthermore, these re­
lations illustrate again that turbulent flows contain motions with a broad 
range of scales and Eq. 1.25 indicates that the higher the Reynolds number, 
the broader this range of scales. Correlatively, the main difference between 

5 The Reynolds number Re\ = u\/u is often used to characterize homogeneous flows 
and Re\ satisfies Re\ ~ \JRej,. In case of isotropic turbulence, Hinze [Hinze, 1959] 
indicates that the proportionality constant in the above relation is such that -Re^ = 

file:///JRej
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two turbulent flows with the same integral scale but with different Reynolds 
numbers is the size of the smallest eddies. 

1.2.3 A glimpse at numerical simulations of turbulent flows 

Solving the unsteady Navier-Stokes equations implies that all scales of mo­
tion have to be resolved from the largest scale down to the Kolmogorov 
scale LK- In other words, the spatial separation of the sampling points A 
cannot be larger than LK- Thus the number of grid points Nxyz needed 
to perform a three-dimensional Direct Numerical Simulation (DNS) scales 
such as: 

Nxyz « Re\. (1.28) 

The timescale of the smallest eddies also provides a bound for the maximum 
time step, At, allowed. To get an accurate time description, a fluid particle 
cannot move by more than one grid spacing per time step. The minimum 
number of time steps necessary to complete a large-eddy turn-over time T 
is: 

T T T a 
Nt « — « - — — « —~Re\. (1.29) 

At LK/u0 L/u0
 L v ' 

Assuming that the CPU time required by a numerical algorithm is pro­
portional to the number of operations, the cost of the simulation scales 
as: 

computing time oc Nxyz.Nt oc C.Re\ (1.30) 

where C is the cost of the algorithm expressed in [s/grid point/ iteration] 
which depends both on the numerical solver and on the speed of the com­
puter. Further, if walls are present, the near-wall structure need to be 
resolved leading to an even stronger dependence on the Reynolds number. 
It becomes obvious that for large Reynolds number flows, DNS require com­
puter resources much larger than the available supercomputer capacities6. 

6Kaneda et al. [Kaneda et at, 2003] performed a DNS (e.g KmaxLK ~ 1) of isotropic 
turbulence in a periodic cube at a Reynolds number based on Taylor's microscale Rex = 
1200 on a 40963 points grid e.g. Nxyz > 68.109 nodes. The calculation was performed 
on the recently developed Earth Simulator with a peak performance and main memory 
of 40TFlops and lOTBytes respectively which is far beyond the capacities of "usual" 
supercomputers! To the authors' knowledge, this calculation represents the highest value 
of Rex obtained in a DNS. 
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For practical Reynolds number flows7, we cannot solve the dynamics of all 
scales directly but only those of certain scales. This poses a challenge for 
accurate simulations of the resolved scales because the non-linearity of the 
Navier-Stokes equations is responsible for strong interactions between all 
scales as discussed in the next section. 

1.3 Inter-scale Coupling in Turbulent Flows 

1.3.1 The energy cascade 

The most popular feature related to the dynamics of turbulence is the con­
cept of kinetic energy cascade. It tells us that the turbulent kinetic energy 
(TKE) is created by some external forces or hydrodynamic instabilities at 
a large scale L (typically of the order of the integral scale of turbulent fluc­
tuations) and is then transferred by inviscid nonlinear mechanisms toward 
small scales where the viscous dissipative processes transform it into heat. 
This mechanism is illustrated in Fig. 1.7 where one can distinguish three 
typical regions in the energy spectrum E (K): 

• The first region consists of the largest eddies where turbulence energy is 
generated by the mean flow. These scales are coupled with the mean field 
and are dependent on turbulence production mechanisms (external forces, 
hydrodynamic instabilities). Consequently, they do not possess a universal 
character. The large-scale region is usually modelled by a spectrum taken to 
be proportional to K4 . This subrange is then followed by a peak in which 
energy is fed at the integral length scale L. Assuming that the energy-
containing eddies break up at a time scale of their turn over, the rate at 
which energy (per unit mass) enters the cascade is: 

£l~Ti^~T (L31) 

and does not depend on the viscosity v. 
• The second region is associated with the intermediate scales I such as 
LK C l C i and it is the region in which energy is transferred to smaller 

7In practice, the integral scale of turbulence L as well as the velocity scale uo of the 
largest eddies are generally about one order of magnitude smaller than the characteristic 
dimensions of the flow (like the body size D) and the free-stream velocity UQ. Therefore, 
ReL/ReD < 10~2 but ReL remains quite large because Rer> usually lies in the range 
104 — 108 especially in aeronautical applications. 
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scales by non-linear interaction with no action by viscosity or condition of 
formation. The extent of this inertial subrange depends on the Reynolds 
number. In that region, the only relevant parameters are the length scale 
under investigation K = 1/7 and the mean dissipation rate of turbulent 
energy ET- Since energy is transferred without loss, ST remains constant 
and equal to the finite mean energy8 dissipation rate: 

eT « e j . (1.32) 

The spectrum in this inertial subrange, frequently called the Kolmogorov 
spectrum law, reads as: 

E (K) = K 0 £ 2 / 3 « - 5 / 3 (1.33) 

where KQ is the Kolmogorov constant that lies in the range 1.4 — 1.7. 

• The last region contains the smallest scales for which viscous effects be­
come important and where the kinetic energy is dissipated into heat. The 
rate of dissipation in the smallest eddies is s = 2vSijSij where the rate 
of strain associated with the smallest scales can be evaluated by S ~ jf*-. 
Since energy is transferred without loss, we get: 

f « - 4 (1-34) 

which combined with the relation VK^K = 1 allows us to recover the Kol­
mogorov microscales introduced in §1.2.2. 

The basic physical mechanism responsible for this energy transfer to­
ward smaller and smaller scales is the vortex stretching: when vortices 
experience a stretching along their main rotation axis, they are elongated 
in this direction. In incompressible flows, this will result in a decrease of 
the diameter of the vortex, the volume occupied by the vortex being con­
stant. This mechanism being inviscid by nature, one can reasonably assume 
that the angular momentum of the vortex (here modelled as a vortex tube) 
is an invariant of this transformation, leading to an increase of the axial 
component of the vorticity. As a final result, the kinetic energy has been 
transferred toward smaller scales, since the radius of the vortex has been 
decreased. 

8When conditions are statistically steady. 
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Energy containing range inertial subrange dissipation range 

Fig. 1.7 Sketch of the energy cascade. In physical space, the large eddies are broken 
into smaller and smaller eddies. The energy is injected into the flow by the driving 
mechanisms at the rate £/, transferred to smaller scales at the rate £T and dissipated 
into heat at the rate e. The local equilibrium assumption is expressed by the equality 
ej = e-r = s. Both scales are logarithmic. 

1.3.2 Inter-scale interactions 

The previously seen local cascade picture of turbulent transfer assumes a 
primary interaction of each scale of motion with adjacent scales. More pre­
cisely, the hypothesis of Kolmogorov states that the cascade is essentially 
unidirectional: energy is mainly transferred from larger to smaller eddies 
and the flux of energy in the inertial subrange is independent of the eddy 
size. However, an important question deals with the localness of the kinetic 
energy cascade mechanism in terms of wave number: does an eddy of size 
I have significant interactions (e.g. transfer of a non-negligible amount of 
kinetic energy) with much smaller or much larger scales? 

To get a deeper insight into the inter-scale couplings in incompressible 
turbulent flows, it is useful to write the momentum equation in the Fourier 
space. Noting the wave vector K and the corresponding velocity mode U(K) 
(here the explicit dependence on time is omitted) 
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and applying the Fourier transform to the momentum equation of the 
Navier-Stokes equations, one obtains9: 

— + VK2\ui(K) = Ti(K) (1.37) 

in which the linear terms with respect to the velocity amplitude are grouped 
into the left-hand-side and describe respectively the time dependency and 
changes due to viscous effects. The non-linear term TJ(K) in the right-hand-
side represents the effect of convection and pressure and takes the following 
the form10: 

Ti(/e) = Mijrn{k) / / Uj(p)um(q)<J(re - p - q)d3pd3q , (1.39) 

with: 

1 
Mijm(K) = --(KmPij{K)+KjEim(K)) , (1 .40) 

in which 6 is the Kronecker symbol (8(K) = 0 if K ^ 0) and P%J{K) is the 
projection operator on the plane orthogonal to the vector K. This operator 
is written: 

^ » = ( < % - ^ ) - (1-41) 

Note firstly that the non-linear convective term becomes a convolution 
in wave number space and it shows that all wave numbers are involved. 
Secondly, it is observed that the non-linear term makes three wave numbers, 
i.e. three scales appearing, defining a triad. Such interactions are thus 
referred to as triadic interactions. Note also that this triadic nature of the 

9Note that continuity requires in spectral space: 

V.u = 0 & K.U(K) = 0 (1.36) 

and shows orthogonality of the wave vector K and the mode U(K) . 
1 0The relation is obtained by using the following property of the Fourier transforma­

tion: 

/(x)ff(x) ^f*g = f f(p)g(K - p)d3p = IJ 7(p)g(q)<5(« - p - q)dV3q(1.38) 

where f (5(«)d« = 1. 
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non-linear interactions is intrinsically related to the mathematical structure 
of the Navier-Stokes equations. 

LOCAL TRIAD NON-LOCAL TRIAD 

Fig. 1.8 Typology of triadic interactions. The flowfield at wave number K is seen to 
interact with the wave vector component p and q satisfying K = p + q. 

Triadic interactions are usually classified according to the topology of 
the triangle formed by the three wave vectors K , p and q (see Fig. 1.8): 

• local interactions are interactions between three scales having ap-
proximatively the same size, i.e. 

- < max \—, — ><a, a = 0(1) 
a I K K> 

• non-local or distant interactions are associated with triads such 
that K < p ~ g o r f c ~ ( ) > p , e.g. between one long-wave number 
and two high-wave-number modes. Correlatively in physical space, 
these interactions correspond to the interaction between one large 
scale and two small ones. 

It is also possible (see [Lesieur, 1990]) to obtain from Eq. 1.37, an 
equation describing the evolution of E(K), e.g. the energy at a particular 
wave number K. This equation includes terms which describe the non-linear 
transfer of energy from one scale to another via triadic interaction. Theoret­
ical works conducted using asymptotic series expansions, renormalization 
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methods or two-point closures of turbulence and detailed analyzes of direct 
numerical simulations show that (see [Sagaut, 2005] for a review): 

• The kinetic energy cascade is mainly due to local energy transfers 
induced by non-local triadic interactions: the two small scales are 
advected/stretched by the velocity field induced by the large one, 
while the large one experienced a random forcing due to the two 
small ones, resulting in a diffusion in the wave number space. 

• Most of the kinetic energy exchanges at wave number K occur 
within the range [K/2, 2K]. 

• In the asymptotic limit of infinite Reynolds number, distant inter­
actions can represent up to 25% of the total kinetic energy transfers. 

• In non-isotropic cases, anisotropy at large scale is observed to 
contaminate the small scales (anisotropy cascade). Some very 
non-local anisotropy transfers without kinetic energy transfers are 
present. 

These results show that the dynamics of turbulence is a multiscale phe­
nomenon by nature: the essential non-linear mechanisms are based upon 
the interactions between scales of very different sizes. Therefore, no scales 
can be neglected without polluting the dynamics of all scales, including 
the large ones. A model must be used to mimic the influence of discarded 
scales. 
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Chapter 2 

Turbulence Simulation and Scale 
Separation 

2.1 N u m e r i c a l S i m u l a t i o n of Turbulent F l o w s 

As has been mentioned in the first chapter, a turbulent flow is characterized 

by a very wide range of scales (both in space and time). Due to this 

specificity, the direct resolution (referred to as DNS - Direct Numerical 

Simulation) of a given three-dimensional problem has been shown to scale 

as 0{Re\), where Re^ denotes the Reynolds number based on the spatial 

integral scale L. 

Since most of the turbulent flows encountered in practical configura­

tions, and particularly in aerospace applications are characterized by some 

very high values of the Reynolds number (typically 104 < Re^ < 108), the 

direct numerical simulation of turbulent flows remains out of reach from the 

capabilities of actual supercomputers. To illustrate this point, Spalart et al. 

[Spalart et al., 1997] indicate tha t the direct simulation of the flow over the 

wing of a commercial aeroplane would require the use of 1016 discretization 

points! 

For several years it has thus clearly appeared necessary to develop some 

specific approaches to reduce the cost associated with the simulation of 

turbulent flows, leading to the emergence of several numerical techniques. 

The global idea of such approaches is to reduce the number of degrees of 

freedom of the problem, by resolving only some specific scales of the flow. 

The principle is then to perform a scale segregation, and to separate the 

structures of the flow which are identified as being of direct practical interest 

from other scales which can remain unresolved, and only accounted for 

through the use of a mathematical model. One common point between the 

different cost reduction approaches is that they all (at least theoretically) 

rely on a scale separation operator which performs the distinction between 

21 
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resolved and unresolved scales. Depending on the intrinsic nature of this 
scale separation operator, two main classes of methods arise: 

• The first one relies on a statistical description of the flow. In this 
case, the involved scale separation operator thus relies on an av­
eraging procedure. In practice, all the turbulent motion of the 
flow is then unresolved and has to be described thanks to the use 
of a mathematical model. Due to this definition, the cost of the 
simulations is significantly reduced in comparison with DNS, thus 
leading to some simulations which can be easily performed with 
usual computers. However, since the resolved field is limited to 
a statistical description of the flow, the intermittency of the tur­
bulent phenomenon cannot be returned by such simulations, and 
highly unsteady flow phenomena cannot be accurately described. 
On the other hand, and because of their affordable computational 
cost, these approaches (referred to as RANS - Reynolds-Averaged 
Navier-Stokes) are still the most commonly used for industrial 
applications. 

• The second one relies on a scale separation between the largest 
energy-containing eddies of the flow and the small scales responsi­
ble for the energy dissipation. Here, the scale separation operator is 
then (at least formally) defined as a low-pass filter in the wavenum-
bers space. Since the cutoff wavenumber can be arbitrarily fixed, 
this approach then provides a full description of unsteady events, 
up to the cutoff frequency related to the cutoff wavenumber. This 
approach (referred to as LES - Large-Eddy Simulation) thus ap­
pears as an interesting compromise between the prohibitive cost of 
DNS and the averaged description of the flow provided by RANS. 
However, the classical assumptions for LES suggest that the cutoff 
wavenumber should be taken in the inertial range of the energy 
spectrum1, so that the computational costs are rapidly increasing 
when complex flow physics and realistic values of the Reynolds 
number are considered. 

As already said, one of the main properties of a turbulent flow is its mul­
tiscale aspect. Several ranges of characteristic scales co-exist in such flows, 

1A commonly retained assumption in LES is that the small unresolved scales are 
nearly homogeneous and isotropic. 
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and are associated to some specific physical mechanisms. For this reason, 
it can be of great interest to account for this particularity of turbulent 
flows when deriving some physical and mathematical models and associ­
ated numerical techniques for their simulation. Such methods are referred 
to as the multilevel or multiresolution approaches, and rely on an explicit 
splitting of the flow variables into several bands in the wavenumber space. 
This splitting leads to a hierarchical organization of the flow structures, as 
a function of their sizes. The global idea of the multilevel approaches will 
then be to consider some specific numerical treatments for each range of 
scales from this classification. These methods can then be formally classi­
fied in two distinct categories: the first one consists in taking advantage of a 
multilevel splitting of the flow variables to derive some improved mathemat­
ical closures for the turbulent flow simulation approaches. Such improved 
closures then take into account some more complex flow phenomena than 
conventional models, thus resulting in a global increased accuracy of the 
simulations. The second category is, on the other hand, oriented towards 
a reduction of the cost of the simulations, while globally keeping the same 
accuracy as conventional approaches. To this end, the global idea is to use 
some specific numerical treatments for each range of scales of the flow, and 
more particularly to treat the scales which are associated to the largest 
computational costs with less accuracy than the other ones. 

The aim of this chapter is to present the (classical) scale and multiscale 
separation concepts. Detailed emphasis will first be put on the two main 
scale separation approaches used in turbulent flows simulations, namely 
the averaging and filtering approaches. Then, the extension of the scale 
separation concept to the case of a multilevel splitting of the flow variables 
will be carried out. In each case, some specific notations, together with the 
associated evolution equations for the resolved and unresolved quantities 
will be derived. 

2.2 Reducing the Cost of the Simulations 

As mentioned above, it is necessary to reduce significantly the cost asso­
ciated to the numerical simulation of turbulent flows. Such a reduction 
is practically obtained thanks to some specific methods which rely on the 
concept of scale separation. This concept will be detailed and discussed in 
the most general case in this section. 
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2.2.1 Scale separation 

At this point, we will place ourselves in the most general case. First of 
all, we introduce a scale separation operator J-. Here, no particular form 
is prescribed for J72. By applying this separation operator to any variable 
of the problem / (x , t ) , where x = (x\,X2,xs)T is the space coordinate 
vector and t denotes the time, we obtain the following decomposition of 
this quantity: 

/ = / + / ' (2.1) 

where / = J-(f) will be referred to as the resolved part of / , and / ' = 
(Id — J7) (/) to as its unresolved part (Id denotes the identity operator). 
In the particular context of turbulence simulation, this decomposition will 
be applied to the aerodynamic variables such as the velocity field u, or the 
pressure P. 

2.2.2 Navier-Stokes-based equations for the resolved 
quantities 

The global idea of all the different cost reduction approaches in turbulence 
simulation will then be to consider only the resolved variables / , while 
adding a mathematical closure to take into account the unresolved ones / ' . 
For this, it is necessary to derive some equations that will allow for the 
description of the dynamics of the resolved aerodynamic field. As will be 
seen below, the evolution equations for the resolved field look very similar 
to the classical Navier-Stokes equations. However, some additional terms 
appear in the equations, which account for all the missing interactions 
between the resolved and unresolved fields. 

As a starting point, we consider the set of the Navier-Stokes equations 
written for an incompressible Newtonian fluid: 

V - u = 0 
<9u „ . , „ „ , (2.2) 
— + V • (u <g> u) = -Vp + vV2u 

where u = (^1,^2,113) denotes the velocity vector, t the time, p = P/p 
with P the pressure and p the density, and v is the kinematic viscosity of 
the fluid. 

Obviously, the general scale separation operator, as it will be detailed later in this 
chapter is introduced in the aim of reducing the complexity of the problem, i. e. decreas­
ing the number of degrees of freedom. As a consequence, such an operator is defined so 
that it decreases the quantity of information of the considered field. 
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The Navier-Stokes-based equations for the resolved field are then ob­
tained by applying the scale separation operator T on the set of Eqs. (2.2). 
At this point, it is useful to introduce some notations that will be used in 
the following. We define the commutator [.,.] between two operators a and 
b as: 

[a,b]f = aob(f)-boa(f). (2.3) 

We also introduce the following cross product operator between two vectors 
u and v: 

£ ( u , v ) = u ® v . (2.4) 

After application of the scale separation operator and rewriting the equa­
tions as functions of the resolved variables only, the set of the Navier-
Stokes-based equations for the resolved field reads: 

V - u = -Ax 

TT -I- X7 • (r 

dt 
u + V • (u ® u) = -Vp + i/V2u - (A2+A3+A4,). 

The four additive terms Ai to A4 are some functions of the original (global) 
field, and cannot be computed directly from the resolved field. Their ex­
pressions are given by: 

Ax = [T, V-] u 

A2=V-[T,B](u,u) 

A3 = [F, V-] B(u, u) + [F, V] p + v [F, V2] u (2.6) 

AA ' dt 

These terms are associated with different sources. Indeed, the term A2 is 
directly linked to the non-linearity of the convective term of the Navier-
Stokes equations, and thus can not be avoided. On the other hand, the 
three other terms A\, A3 and A4 are relative to some possible commutation 
errors between the scale separation operator and the spatial and temporal 
partial derivatives. This indicates that the scale separation operator should 
be chosen in such a way that it commutes with these differential operators. 
It should be noticed here that a non-zero commutation error with the space 
derivatives leads to a non-zero RHS term in the continuity equation, thus 
meaning that the resolved field is no longer incompressible. 
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2.2.3 Navier-Stokes-based equations for the unresolved 
quantities 

For several reasons that will be specified later in the book, it is also useful to 
derive some evolution equations for the unresolved field. This particular set 
of equations is very simply obtained by subtracting the set of the Navier-
Stokes-based equations for the resolved field Eqs. (2.5) from the original 
set of the Navier-Stokes Eqs. (2.2), and using the property / ' = / — / . 
The following set of equations is then obtained for the unresolved field: 

V • u' = Ax 

d 
—u' + V • (u' ® u' + u' ® u + u <g> u') = - V p ' + vV2u' + A2 + A3 + A4. at 

(2.7) 

The two next sections will now be devoted to the description of two par­
ticular approaches of the scale separation procedure: the averaging and 
filtering approaches. 

2.3 The Averaging Approach: Reynolds-Averaged 
Numerical Simulation (RANS) 

The idea of averaging consists in forgetting about the whole set of flow de­
tails and considers that the flow can be described as a mean flow, smoother 
than the instantaneous field, and a fluctuating field, defined as the differ­
ence between the instantaneous field and the mean field. 

2.3.1 Statistical average 

In order to extract statistics of the flow, any turbulent quantity / is here 
split into a mean value / and a fluctuating value / ' as 

/ = / + / '• (2-8) 

The simplest way to define / is to use the ensemble averaging. One 
may imagine repeating N times the experiment with identical boundary 
conditions, starting from initial conditions as close as possible. Due to the 
turbulence, any turbulent quantity / will take different values / , , i = 1..N 
for every realization of the flow. The so-called ensemble average is obtained 
by taking the arithmetic mean of the samples /j when N tends to infinity : 
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1 i=N 

7=iL-ivE^ (2-9) 
j = l 

However, for practical reasons, an unsteady computation is only carried 
out once. When performing time-dependent calculations, decomposition 
Eq. (2.8) can still be used and the bar operator can be considered as a 
time-average over T. The averaging time T has to be greater than the 
characteristic time scale of turbulence r and smaller than the characteristic 
period 6 for the time evolution of the mean properties : 

T<^T<^6. (2.10) 

The causal average operator can thus be defined as : 

1 /"' 

/(*) = - / f(s)ds with T » r (2.11) 
1 Jt-T 

which is in fact a low-pass filter with ^ representing the cut-off frequency3. 

In the case of steady flows, it is common to introduce the temporal 
average defined as 

(f)T = lim ~ I f{s)ds. (2.12) 
T^°° J Jo 

The ergodicity principle, as demonstrated by Monin and Yaglom [Monin 
and Yaglom, 1971], states that the time-averaged quantity (f)T converges 

to the ensemble-averaged quantity / in the sense ( ( / ) T — / ) = 0 if and 
only if: 

1 fT 

-J f'f'ds = 0. (2.13) lim „, 
T^oo T J0 

For a steady turbulence, this hypothesis thus appears as valid, since the 
fluid particles are de-correlated for large time separations. That means that 
in the context of steady flows, the ensemble average (2.9) can be simply 
replaced by the temporal average (2.12). 

3 This URANS approach means that there is a "spectral gap" between the turbulence 
and the unsteadiness of the mean field. 
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2.3.2 Reynolds-Averaged Naviei—Stokes equations 

The aim of this section is to derive some evolution equations for the aver­
aged aerodynamic field, i.e. to rewrite the set of Eqs. (2.5) in the particular 
case of a statistical averaging of the flow variables {JF referring here to a 
statistical averaging operator). The averaging operator, as defined in the 
previous section satisfies several mathematical properties (o denotes a con­
stant parameter, and / and g are some functions of space and time): 

c i = a 

af = a] 

f+9=f+9 

[-ol = 0, £ = t,X\,X2,X3 

7 = 7 
77 = o 
fg = 7g 
h i = fg + f'g'-

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

The three first properties are classical and referred to as constant conser­
vation, linearity, and associativity of the averaging operator, respectively. 
The fourth property (commutation with time and space derivatives) is very 
important, since it leads to several simplifications in the additional terms 
(given by Eq. (2.6)) arising in the Navier-Stokes-based equations for the 
resolved (averaged) quantities. 

Indeed, when considering this commutation property, together with the 
two last properties (idempotence), the following simplification of the addi­
tive terms is obtained: 

Ai = A3 = A4 = 0 
A2 = V • TRANS 

where TRANS is referred to as the Reynolds stress tensor 

(2.22) 

TRANS =u'<g>u'. (2.23) 

This tensor represents all the interactions between the mean flow and tur­
bulence. It should be noted that its trace is equal to twice the Turbulent 
Kinetic Energy (TKE) k = | « X -
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With these simplifications, the set of the so-called Reynolds-Averaged 

Navier-Stokes (RANS) equations is expressed as: 

V - u = 0 

u + V • (u <g> u) = - V p + uV2u - V • TRANS-
d (2 24) 

dt 

So far, the Reynolds stress tensor remains an unknown term, since it cannot 

be expressed as a function of the resolved field only. A specific mathemat­

ical closure has then to be introduced to model the effect of the Reynolds 

stresses. This point has received much at tention in the last century, leading 

to the emergence of a large number of approaches to provide a closure for 

the Reynolds stress tensor, and a link between the mean field values and 

the Reynolds stresses. The full and exhaustive survey of such models is 

beyond the objectives of this book, but the interested reader can refer for 

instance to the monograph by Piquet [Piquet, 1999]. The next chapters 

will focus on some specific models which rely on the concept of a multiscale 

decomposition. 

2.3 .3 Phase-Averaged Navier Stokes equations 

In the framework of unsteady flows with a pronounced periodic character, 

specific averaging procedures have been proposed in the literature. Indeed, 

to extract the organized wave motion from the background field of finite 

turbulent fluctuation, Hussain and Reynolds [Hussain and Reynolds, 1970], 

decompose any fluctuating quanti ty / (x, t) as : 

/ ( x I t ) = 7 ( t ) + / ( x , i ) + / ' ( x , t ) (2.25) 

where / is the mean value similar to eq. (2.8), / the statistical contribution 

of the organized motion and / ' the fluctuating part of turbulence. The 

authors introduced the phase-average procedure4 defined as: 

1 N 

(/ (x, t)) = lim -J2 f (x, * + **) (2-26) 
N—»oo iv ^—' 

k=\ 

where tk are the time instants at which the reference phase occurs at loca­

tion x. Eq. (2.26) can be considered as a conditional ensemble average at 

any point in space of the values of / tha t are realized at the t ime tk = kT 

4Note that the phase-average is measurable quantity in experiment and not only a 
mathematical concept. 
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in the cycle of the T-periodic motion. The component / in Eq. (2.25) is 
then 

/ = ( / ) - / • (2-27) 

Two useful properties that follow from these definitions are given below: 

</'} = 0 _ (2-28) 

JfTf = Jf = 0- (2-29) 

The first relation indicates that the random fluctuation has zero mean at 
constant phase. The last relation states that the organized and turbulent 
motions are uncorrelated. Nevertheless, the use of decomposition given 
by Eq. (2.8) into the Navier-Stokes equations yields to non-closed system 
of equations. Indeed, one can show by a suitable manipulation with the 
Navier-Stokes equations, that the new system contains terms involving the 
oscillation of (u' <g) u') — u' ® u' in the Reynolds stresses of the background 
turbulence. 

To avoid a too complex form of the new system of equations, an alterna­
tive has been suggested by Cantwell and Coles [Cantwell and Coles, 1983] 
which consists in using the decomposition: 

/ = ( / > + / ' (2-30) 

instead of the decomposition given by Eq. (2.25) where the phase operator 
can be expressed as: 

ii}'^Lj(t,d' (2-3i) 
with A\l/ — T/N and N the number of phases in a period T. It can be 
noted that Eq. (2.31) is very close to the URANS operator introduced in 
the previous section (see Eq. (2.11)). Furthermore, the use of the decom­
position (2.30) into the the Navier-Stokes equations shows that the govern­
ing dynamical equations are formally equivalent to the classical averaged 
Navier-Stokes equations. Therefore, the resulting system of equations is 
sometimes named PANS which states for Phase-Averaged Navier-Stokes 
equations. The conventional Reynolds stresses (u' ® u') are generated by 
spatial local random fluctuations at constant phase. 
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2.4 The Large Eddy Simulation Approach (LES) 

As already mentioned in Section 2.1, the Large-Eddy Simulation technique 
relies on a decomposition of the aerodynamic field between the large (in 
a sense to be defined more precisely) and the small scales of the flow, the 
largest ones being directly resolved, while the effect of the small ones is 
only represented through the use of a model. The next section discusses in 
more details the concept of large and small scales separation. 

2.4.1 Large and small scales separation 

In the most common theoretical framework of Large-Eddy Simulation (see 
Chapter 4 for a survey of possible alternative definitions), this separation 
is obtained by introducing a low-pass filter (in the wavenumber space) G, 
which is characterized by its cutoff lengthscale in the physical space: A. 

Any quantity / of the flow, function of (x, t) £ fl x R + where Q C H 
denotes the physical domain, the filtered variable / is then formally ex­
pressed as a convolution product by the filter kernel G: 

f(x,t) = G*f(x,t) 

= / + ° ° [ G(A(x,t),x-Z,t-t')f(Z,t>)dZdt>. ( 2 ' 3 2 ) 

Jo Jn 

To simplify the following developments, we will restrict ourselves to the 
simplified usual case, considering only a spatial and isotropic filtering of 
the variables. In this case, A(x, t) = A. At this point it should however be 
mentioned that several works exist, which focus on the problem of space-
varying cutoff lengths [Ghosal and Moin, 1995; Vasyliev et al., 1998], or 
explicitly account for time filtering effects [Dakhoul and Bedford, 1986a; 
Dakhoul and Bedford, 1986b; Pruett, 2000; Pruett et al., 2003; Carati and 
Wray, 2000]. 

In the case where A(x, t) = A, relation (2.32) simplifies as: 

7(x, t)= f G(A, x - £)./(£, t).dC (2.33) 

The filtered variable / thus defined is then a representation of all the scales 
with a size larger than A. In spectral space, the length A being associated 
to the cutoff wavenumber KC = 7r/A, the filtered variable is then formally 
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associated to wavenumbers K < KC. Obviously, the unresolved part / ' = 
/ — / is a representation of the small scales of the flow, referred to as the 
subgrid scales , whose size is smaller than A. 

This decomposition of the turbulent field is illustrated in spectral space 
in Fig. 2.1, in the ideal case of a sharp cutoff filter. 

Fig. 2.1 Turbulent field decomposition (sharp cutoff filter). 

The most famous filters introduced in the framework of Large Eddy 
Simulation are the sharp cutoff filter (which has a finite support in spectral 
space), the box filter (which has a finite support in the physical space), and 
the Gaussian filter. It is worth mentioning that the filtering operators used 
in LES are generally not some Reynolds operators5. More particularly that 
means that in general: 

7 = G * G * J V 7 (2.34) 

J1 = G*{Id-G)*f^0. (2.35) 

It has also to be said that the filtering framework introduced in this section 
is generally only a theoretical view. In practice, Large Eddy Simulations 
are in most cases performed in the physical space, with the use of some 
numerical schemes that introduce an additional dissipation. The resulting 
effect is that the scheme acts as a numerical filter which damps the highest 
resolved frequencies of the flow. In such a context, the filtering operation 

5 However the sharp cutoff filter satisfies this property. 
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is thus widely assumed to be implicitly due to a combination of the mesh 
and the intrinsic dissipation of the numerical scheme. The consequence is 
quite dramatic, as it means that it is generally impossible to get access 
to the effective filter of the simulation. For this reason, some numerical 
approximations of usual filters are introduced when needed (for instance 
for subgrid scale modelling issues), in which the form of the filter and its 
cutoff lengthscale are imposed a priori. Some authors have analyzed more 
in detail the effect of the use of low-order numerical schemes on Large Eddy 
Simulation. Among them, Gamier et al. [Gamier et al., 1999] have re­
interpreted the numerical scheme as an equivalent Smagorinsky-like model, 
and showed on the ground of homogeneous isotropic turbulence simulations 
that low-order dissipative schemes are generally associated to larger values 
of the generalized Smagorinsky constant than the classical range Cs = 0.1 — 
0.2. This concept of generalized coefficient was extended in a later study by 
Mossi and Sagaut [Mossi and Sagaut, 2003] to the case of a fully developed 
channel flow. The main conclusion of these works is that such schemes 
are not well suited for LES, and that there would be no benefit at all in 
using an explicit subgrid model in combination with such schemes, since the 
numerical diffusion would mask the effects of the model. This observation 
is also the basis of the Implicit LES (ILES) approach, which consists in 
assuming that the numerical dissipation acts on the small scales similarly 
to an explicit subgrid scale model. 

2.4.2 Filtered Navier Stokes equations 

In this section, the set of the filtered Navier-Stokes equations, which de­
scribe the dynamics of the largest scales of the flow, is derived. Again, the 
starting point will be the general set of the Navier-Stokes-based equations 
for the resolved field (2.5), where the scale separation operator JF refers 
here to the filter G as introduced in the previous section. 

Here, we will restrict ourselves to the common case considering the 
assumption of commutativity between the filtering operator G and time 
and space derivatives. Under these assumptions, the additive terms (2.6) 
simplify as: 

Al = A3 = t = ° (2-36) 
A2 = V • TSGS 

where TSGS is the subgrid stress tensor, defined as: 
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TSGS = U ( g ) U - U < g > U . (2.37) 

This term represents all the interactions between the resolved and unre­
solved scales, and requires a mathematical closure since the original veloc­
ity field u remains unknown in the simulation. As for the Reynolds stress 
tensor, many works have been devoted to the development of subgrid mod­
els for the subgrid stress tensor. In this book, only the models based in the 
multiscale decomposition will be detailed. For an overview of other exist­
ing subgrid closures, the reader can refer for instance to the monograph by 
Sagaut [Sagaut, 2005]. 

With these notations, the filtered Navier-Stokes equations finally read: 

V - u = 0 

u + V • (u ® u) = -Vp + vV2u - V • TSGS-
d N , (2.38) 

dt 

Several remarks can be made about this new set of equations, and the 
subgrid stress-tensor: 

• A deeper analysis of the different contributions of the subgrid stress 
tensor TSGS c a n be achieved by considering Leonard decomposition 
[Leonard, 1974]. This splitting of TSGS is obtained by introducing 
explicitly the identity u = u + u' in its expression (2.37), leading 
to: 

TSGS = 5 8 i i - u ® u + u ' ® u + u 0 u ; + u ; (g) u ' . (2.39) 
L C R 

Considering this decomposition, one distinguishes three different 
types of interactions associated to the three respective tensors L, 
C, and R: 

— The Leonard stress tensor L which characterizes the fluctu­
ations of the interactions between the resolved scales them­
selves. It is to be noted that this tensor is directly computable 
from the resolved variables, provided an explicit expression 
(or, at least, an approximation) is available for the filtering 
operator. 

— The Cross stress tensor C which characterizes the cross inter­
actions between the resolved (large) and subgrid (small) scales 
of the flow. 
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- The Reynolds subgrid stress tensor R which characterizes the 
direct effect of the small scales of the flow on the resolved field. 

It can be easily seen that the RANS approach corresponds to the 
case L = C = 0. 

If we now consider the real philosophy of Large Eddy Simulation, 
the simulation should only deal with filtered quantities. This is 
particularly true when the filter remains explicitly unknown and is 
just implicitly defined as a combination between the computational 
grid and the numerical scheme. In that case, the convective term in 
the filtered equations should then be re-formulated as V. (u ® u) 
since the non-linear term u <g> u introduces some unresolved scales 
associated to wavenumbers K > KC. The fully consistent filtered 
equations should then be rewritten as : 

V u = 0 
d , . n (2.40) 
— u + V • (u <g> u) = - V p + vV2u - V • rggg ' 

where the consistent subgrid stress tensor is expressed as: 

'SGS >u-u<g>u. (2.41) 

• As pointed out by Germano [Germano, 1999], it is to be noted that 
the filtered Navier-Stokes equations have a form which is strictly 
similar to the one from the Reynolds-Averaged Navier-Stokes equa­
tions (2.24). Indeed, these two sets of equations may only be con­
sidered as some particular cases of the general set of equations (2.5) 
in which no assumption was carried out about the nature of the 
scale separation operator J-. This remark motivates the develop­
ment of a coupling between these two approaches and the definition 
of some new hybrid strategies combining the advantages of both of 
them. Such approaches will be detailed in Chapters 7 and 8. 

2.5 Multilevel/Multiresolution Methods 

This section presents the general framework of multilevel methods, in the 
case of a hierarchical decomposition. The hierarchical terms refers to a 
procedure by which some some coarser and coarser levels of resolution will 
be obtained by successive applications of some scale separation operators 
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on the original aerodynamic field. In other words, the resolved information 
will be a decreasing quantity as far as the representation level grows. It has 
to be mentioned here that some existing multilevel methods - which will be 
presented later in the book - do not correspond to this formalism, since they 
consider that the resolved information increases with the resolution level. 
This will be for instance the case for the statistical multilevel methods 
presented in Chapter 3. 

2.5.1 Hierarchical multilevel decomposition 

In order to obtain a representation of the function at several resolution 
levels, we introduce a hierarchy of operators F^n\ for n — 0 to N, N > 1. 
We also impose: 

J"(0) = Id. (2.42) 

For any {n,m} 6 [l,iV] x [l,n], we then define the operator Q^ as the 
result of the successive application of the operators jF(m) to T^ : 

g™ = F{n)o^n'1)o...oF(m+1)oT{m) (2.43) 

and: 

0 £ = . F ( n ) , G°Q=Id. (2.44) 

In the following, J7^ will be referred to as a primary scale separation 
operator, while Q^ will be referred to as a combined or hierarchical scale 
separation operator. 

Several representation levels of any quantity / are then obtained by 
applying the operator Qf to it, which is equivalent to applying Qft when 
considering (2.42). We thus define the representation of / at the level 
ne[l,N], noted / ( n ) by: 

7(n) = ^ ( / ) 
= ^™)o. . .o j f ( 1 ) ( / ) (2.45) 

= 60" (/) • 

Obviously, similarly to the scale separation operator F, the operators 
J7^ introduced here denote some operators that allow compressing of the 
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information contained in the function / , leading to some coarser and coarser 
representation of / as far as n grows6. 

For each level n considered, the function / can thus be decomposed into 
— (n) 

a resolved part / and an unresolved one f'n: 

f=7{n) + fn (2-46) 

where the unresolved part of / at the representation level n can be simply 
evaluated by substraction: 

Jn~ J J (2.47) 
= {Id - G?) /. 

Recursively, and for each level n = 1 to TV, the following decomposition 
of / is derived7: 

n - l 

/ = 7 ( n ) + £ * / ( , ) - (2-49) 
z=o 

In this last expression, the quantity 8f^l\ referred to as the detail of level I, 
corresponds to the complement of information on / obtained when moving 
from the representation level (I + 1) to the level I, or equivalently to the 
loss of information when moving from level I to the coarser level (I + 1): 

5/(0 = 7 ( 0 _ 7 ( z + 1 ) 

= ( J d - ^ ' + 1 ) ) / ( 0 (2-50) 
= fi+i ~~ fi • 

More generally, the decomposition (2.49) reads, for each representation level 
m < n: 

7 ( m ) = 7 ( n ) + ^ 5 / W . (2.51) 

6As will be detailed later, it is not necessary that all the different operators belong 
to the same class of scale separation operators. For instance it appears possible to 
combine filtering and averaging operators, leading to the class of the so-called RANS/LES 
strategies which will be discussed in Chapters 7 and 8. 

7 This concept of multilevel representation of the data has been extensively developed 
by Harten [Harten, 1983; Harten, 1994], who introduced the decomposition (2.49) in the 
following form: 

/ = Mc(7
(n]',5f(n-V ,...,8fW',5/<°>) • (2.48) 
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This relation is equivalent to the following simple idea: 

The representation of the function f at a given level m is 

obtained directly from its representation at a coarser level 

n and from the details corresponding to the loss of infor­

mation between these two levels. 

2.5.2 Practical example: the multiscale/multilevel LES 

decomposition 

A particular case of multiscale separation, as it has been presented in the 

previous section, is the one used in multilevel Large-Eddy Simulation. The 

idea is here to obtain a scale hierarchy ranging from large to small scales by 

means of filtering operators Gn acting as low pass filters in the wavenumbers 

space: 

T{n) = G„. (2.52) 

The filtering operators Gn are characterized by their respective cutoff 

lengthscales A^™), increasing8 with n, i.e. A^-n+1^ > A^n\ 

A filtering operator Q^, resulting from the successive application of the 

primary filters Gm to Gn is then introduced: 

Gm = Gn * G n _ i * ... * G m + i *Gm. (2.53) 

Thanks to this definition, the resulting hierarchy of filtering operators 

{Gi}n=1 N allow the definition of several filtering levels of the aerodynamic 

field. The filtering operators Q™ will then be referred to as hierarchical or 

combined filters. In the most general case, they differ from the primary 

filters G„ . For each aerodynamic variable, such as for instance the velocity 

field u, the filtered field at the level n will then be: 

" * " - ? * " „ (2.54) 

The hierarchical filters £™ are characterized by their effective cutoff length-

scale9 A . In this framework, the filtered variables at level n (u^n^) 

8 Here, it is recalled that this formalism is the one considered in hierarchical multilevel 
methods. Some other multilevel methods, such as the statistical multilevel approaches 
are on the other hand based on some increasing values of the cutoff wavenumber «("•) = 
T T / A M with n. 

9 The cutoff lengthscale of the hierarchical filter G™ generally differs from the one of 

the primary filter G„: A {n> ^ A ^ . The equality is however verified when Reynolds 

filtering operators are considered as primary filters (sharp cut-off filters for instance). 



Turbulence Simulation and Scale Separation 39 

are then a representation of the flow structures associated to wavenumbers 
— (n) 

K < Kn, where Kn = IT/ A is the cutoff wavenumber of the filter G". In a 
similar way, u ^ corresponds to a representation of turbulent scales larger 
than A 

The details between two successive levels I and I + 1 (Su^ = u ^ — 
u""1"1-*) are then corresponding to the frequency complement of the variable 
u between the two filtering levels I and I + 1. They represent some flow 
structures with a size smaller than A and larger than A , or equiv-
alently the missing scales between the two description levels I + 1 and I. 

The particular case of multilevel LES which will be detailed in the fol­
lowing chapters of this book consists in resolving only some scales larger 
than the cutoff lengthscale associated to the finest filtering level (n = 1). 
In this case, the following decomposition of the flow variables will then be 
considered: 

n-l 

u W ^ u W + ^ W " (2.55) 

while the effects of the remaining scales (u') are only accounted for thanks to 
the use of a subgrid model. This decomposition is illustrated in the spectral 
space on Fig. 2.2, in the simple case in which the primary filters Gn are 
sharp cut-off filters with respective cut-off wavenumbers Kn. Obviously, 
the limit A'1) —> 0 corresponds to the case of a full resolution of all the 
scales of the flow (DNS). As will be detailed later in the book, the main 
idea of the multilevel LES methods will be - without increasing the cost 
of the simulation - to consider some sufficiently small values of A'1 ' to use 
a simple subgrid closure to represent the effects of the scales associated to 
u', and minimize the errors due to this parametrization. 

2.5.3 Associated Naviei—Stokes-based equations 

As in the general framework involving only one scale separation operator, it 
is useful to derive some evolution equations for the resolved flow variables at 
each representation level. For that purpose, the scale separation operator 
Q" associated to the representation level n is applied directly to the set 
of the Navier-Stokes equations. Again, for a sake of clarity, all the scale 
separation operators will be assumed to commute with space and time 
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A(n+1) A („ ) £(„-!) 5 ( 2 ) 5 ( i ) 

n+1 K n K ^ K 2 K j K 

Fig. 2.2 Multilevel decomposition of the turbulent field (sharp cut-off filters). 

derivatives. The following set of equations is then obtained for the resolved 
aerodynamic field at level n: 

dt 

V . u W = 0 

u w + V. ( u W <g> u{n)) = - V p W + i/V2u(") - V.T<") 
(2.56) 

where T<") remains unknown at the level n, and arises directly from the 
non-linearity of the Navier-Stokes equations. This term is written: 

» U(g) U 
(n) u ( n ) ® u ( n ) . (2.57) 

This tensor cannot be directly computed at the level n, since the original 
velocity field u appears in its expression. A specific closure is thus needed 
for this term to close the system of Eqs. (2.56). The closure of this system 
of equations will be analyzed in detail in the next chapters. 

An evolution equation can also be obtained for the details between two 
consecutive levels n and n + 1. By simply subtracting the filtered Navier-
Stokes equations at a representation level n + 1 from the equations (2.56) 
(representation level n), and remembering that u ( n ) = u ( n + 1 ) + Su^ and 
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p{n) _ p(n+i) _(_ jp(i) j the following system is derived for the details W n ) 
and Sp(n^: 

V. (W">) = 0 

—<5u(n) + V. (<5u(™) ® W " ) + W n > ® u("+ 1) + n ( n + 1 ) ® Su^A 

= -V<5p(n) + ^V25u(") - V. (T^™) - T<n+1)) . 
(2.58) 

This set of equations will be the main basis of the NLDE (Non-Linear Dis­
turbance Equations) approach [Morris et al., 1997; Labourasse and Sagaut, 
2002; Labourasse, 2002], which consists in reconstructing explicitly some 
turbulent fluctuations around a given mean flow. This approach will be 
fully detailed in Chapter 8. 

2.5.4 Classification of existing multilevel methods 

Several multilevel methods can be found in literature, which can be clas­
sified in different subclasses, depending for instance on the nature of the 
primary separation operators Tn, or on the number of scale separation 
levels (N). This section is a proposal of a possible classification of some 
existing multilevel methods. Here, it has been chosen to distinguish among 
the different kind of methods by looking at their range of application. In 
other words, we will try here to answer the two simple questions: (i) what is 
the targeted accuracy of the method in terms of wavenumber content of the 
solution? (ii) what is the aim of the introduction of a multilevel splitting 
of the flow variables? Following this idea, three main classes of multilevel 
methods arise, and are detailed in the next subsections. 

2.5.4.1 Multilevel methods based on resolved-only wavenumbers 

These methods aim at increasing the accuracy of the mathematical closure 
used to represent the missing interactions with the unresolved scales, while 
keeping the maximum quantity of information in the resolved scales range. 
In this case, and with the previous formalism, the field of interest will be the 
resolved field at the finest representation level u*-1', while coarser represen­
tation levels are introduced to perform a deeper analysis of the interactions 
between the resolved scales of motion. Such a better understanding of the 
energy exchanges between the resolved scales is then expected to allow the 
derivation of some improved closures for r ^ . 
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The main methods belonging to this class, and related to the filtering 

approach are: 

• The dynamic subgrid models based on the Germano's identity [Ger-

mano, 1986; Germano, 1992] 

• The dynamic subgrid models based on self-similarity, such as the 

the procedures proposed by Terracol and Sagaut [Terracol and 

Sagaut, 2003] and Shao et al. [Shao et al., 2003]. 

• The improved models based on an additional separation between 

large and small resolved scales, such as the Variational Multiscale 

approach of Hughes [Hughes et al., 1998; Hughes, Mazzei and 

Jansen, 2000; Hughes et al., 2001; Hughes, Oberai and Mazzei, 

2001], and filtered models [Sagaut, Comte and Ducros, 2000]. 

These different methods will be fully detailed in Chapter 4. 

2.5.4.2 Multilevel methods based on higher wavenumbers 

In these methods, the "resolved field" is associated to a smaller wavenumber 

content than what would be really available with the grid. This corresponds 

to the case in which the field of interest is u ' ' , I > 1 (I = 2 in most 

cases). The underlying idea of these methods is to introduce (practically or 

only theoretically) a high wavenumber content, i.e. some fine "unresolved" 

scales, which will be explicitly used for the derivation of the mathematical 

closure for r^1. Such a closure is then expected to be much more accurate 

than more classical closures based only on the lower wavenumbers. 

The main methods in this category are the following: 

• The deconvolution-like methods developed in LES, such as the 

Approximate Deconvolution Model [Adams and Leonard, 1999; 

Adams, 1999; Adams, 2000b; Stolz and Adams, 1999; Stolz 

et al., 2001a; Stolz et al., 2001b] or the velocity estimation model 

[Domaradzki and Saiki, 1997; Domaradzki and Loh, 1999; Loh and 

Domaradzki, 1999; Domaradzki and Yee, 2000]. For these meth­

ods, the general idea is to reconstruct some finer scales to get a 

deterministic approximation of the subgrid stress tensor. These 

methods will be detailed in Chapter 5. 

• The statistical multiscale modelling approaches developed in the 

RANS framework. Here, while the simulation is limited to an av­

eraged description of the flow, the idea is to introduce theoretically 

several bands of in the unresolved par t of the spectrum, in order 
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to introduce some quantities which are more local in the spectral 

space. The aim is then to derive some closures which better take 

into account variations in the spectral features of turbulent fluctu­

ations. These approaches will be developed in Chapter 3. 

2.5.4.3 Adaptive multilevel methods 

These methods aim at adapting the resolved wavenumber content to the 

complexity of the flow. This adaptat ion can be static or dynamic, in space 

and /or time. The global idea is then to increase the range of resolved 

scales where and /o r when required. This can be the case when the flow 

physics is too complex and would result in a too high degree of error with 

classical models, or simply when the application itself requires a wide-band 

description of the flow, such as for instance in aeroacoustics. The main 

adaptive multilevel methods are: 

• The multilevel methods based on the use of a hierarchy of em­

bedded computational grids with different resolutions, for instance 

by using a multigrid10 algorithm. The Adaptive Mesh Refine­

ment (AMR) technique is also a particular dynamic case of such 

a method. Indeed, such a grid hierarchy leads to a multilevel de­

composition of the flow, since each grid level naturally introduces 

its own cutoff lengthscale resulting from a combination of both 

the grid Nyquist cutoff length, and the numerical scheme. These 

methods will be detailed in Chapters 5 and 6. 

• The multilevel methods in which the scale separation relies on the 

use of some spectral algorithms. In this case, the flow variables 

are represented thanks to a summation of basis functions in the 

Fourier space, and it thus appears very simple to perform the scale 

separation, by simply t runcat ing the Fourier series expansion, (see 

for instance [Dubois et al, 1999]). Such methods will be described 

in Chapter 5. 

• A last case of multilevel methods belonging to this class is the case 

of the hybrid RANS/LES approaches. Here, a two-level decompo­

sition of the flow variables is considered, between a filtered (LES) 

part , and an averaged (RANS) par t . In this case, the multilevel 

1 0The term multigrid is introduced to designate a method using different computa­
tional grids, and not to the multigrid methods used in steady CFD algorithms to speed 
up the convergence to a steady state. 
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method then becomes a multiresolution method, since the different 
resolution levels are obtained with some scale separation operators 
of different natures. The idea of these methods is then to reduce 
the cost of the unsteady simulations of turbulence, by using the 
RANS approach in the major part of the computational domain, 
while switching to LES in some flow regions of reduced size only, 
or where the flow can be accurately simulated by LES on relatively 
coarse grids. Chapters 7 and 8 will be devoted to such approaches. 

2.6 Summary 

This section proposes to summarize the different scale separation ap­
proaches which have been described in this chapter. A first possible clas­
sification is summarized by Fig. 2.3, which presents in a hierarchical way 
the different classes of methods, as a function of their scale representation 
ability. 

o 
o 
D 
Q. 
O Hybrid RANS Lto 

Unsteady RANS 

Steady P#NS 

o 

-a 
> 
o 

Fig. 2.3 Classification of the most commonly used methods in turbulence simulations. 

For each approach, particular attention will be paid to the definition 
of the resolved and unresolved part, and to their possible multilevel split­
ting. In each case, some schematic spectral representation of the respec­
tive resolved and unresolved parts of the associated energy spectrum are 
proposed. 
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The different approaches to simulate turbulence are the following: 

• The Direct Numerical Simulation (DNS). This case corre­
sponds to a deterministic representation of all the turbulent scales 
of the flow, from the largest ones to the smallest dissipation scales 
(Kolmogorov scale). In that case, all the turbulent scales are as­
sociated to the resolved part, while there exist no unresolved part, 
as illustrated by Fig. 2.4. 

E(K) 

Fig. 2.4 Resolved (left) and unresolved (right) parts of the turbulent spectrum in the 
case of the DNS approach. 

• The Reynolds-Averaged Navier—Stokes (RANS), or averag­
ing approach. In this case, the only resolved part corresponds to 
a statistical representation of the flow, obtained by an averaging 
procedure. The resolved part then corresponds to an empty turbu­
lent energy spectrum, while all the turbulent scales are modelled, 
as illustrated by Fig. 2.5. 

E(K) 

Fig. 2.5 Resolved (left) and unresolved (right) parts of the turbulent spectrum in the 
case of the RANS (averaging) approach. 
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• The Large Eddy Simulation (LES), or filtering approach. In 
this approach, only the largest scales of the flow are resolved. As 
depicted by Fig. 2.6, the resolved part of the flow then corre­
sponds to the scales associated to wavenumbers n < K±, where /-ci 
is referred to as the cutoff wavenumber. The scales associated to 
greater values of the wavenumber are unresolved, and accounted 
for through the use of a subgrid model. 

2.6 Resolved (left) and unresolved (right) parts of the turbulent spectrum in the 
of the LES (filtering) approach. 

The multiscale statistical approaches. This the RANS 
approach, corresponds only to an averaged representation of the 
flow. The resolved part is then also associated to an empty turbu­
lent energy spectrum, as displayed in Fig. 2.7. However, in this 
case, the idea will be to use a multiscale splitting of the unresolved 
turbulent scales, in order to derive an improved closure for the 
Reynolds stresses. As will be detailed in Chapter 3, the advantage 
of introducing an additional scale separation in the range of the 
unresolved wavenumbers is then to be able to take into account a 
more complex flow physics, such as disequilibrium effects. 
The multilevel LES approaches. These approaches, as the stan­
dard LES approach, rely on the fact that only the largest turbulent 
scales are resolved, while the smallest ones are represented by the 
use of a subgrid model. However, the resolved scales are themselves 
split into several ranges of scales, associated to several bands in the 
wavenumbers space, as illustrated by Fig. 2.8. Three main classes 
of multilevel LES methods then arise, depending on how this split­
ting is used in practice: to derive some improved subgrid models, 
based themselves on low or high wavenumbers (see the previous 
section for a description, and the detailed related approaches in 



Turbulence Simulation and Scale Separation 47 

E(K) 

4 

A(n) 5(n-l) J(2) 5(1) 

A<») A<"-'> A<2> AW 

2.7 Resolved (left) and unresolved (right) parts of the turbulent spectrum in the 
of the multiscale statistical approach. 

Chapters 4 and 5), or to adapt the wavenumber content of the 

solution to flow complexities, thanks to the use of a particular 

numerical t reatment for each wavenumber band defined in the re­

solved par t . The specific methods related to this last point will be 

detailed in Chapters 5 and 6. 
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2.8 Resolved (left) and unresolved (right) parts of the turbulent spectrum in the 
of the multiscale LES approach. 

The hybrid RANS/LES approaches. These methods can be seen 
as a two-level particular case of a multilevel LES approach, in which 
the coarser resolution level is not defined by a classical LES low-
pass filter in wavenumber, but by a statistical average, as in the 
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RANS approach. Here, as shown in Fig. 2.9, the resolved part 
is then considered as the sum of an averaged representation of 
the flow resolved by RANS, and turbulent fluctuations resolved 
by LES. As will be detailed in Chapters 7 and 8, the transition 
from(respectively to) an LES wavenumber content to(respectively 
from) an averaged (RANS) content can be continuous or discontin­
uous in space, leading to some different classes of methods (namely 
global and zonal RANS/LES approaches). 

E(K) 

Fig. 2.9 Resolved (left) and unresolved (right) parts of the turbulent spectrum in the 
case of a hybrid RANS/LES approach. 
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Chapter 3 

Statistical Multiscale Modelling 

3.1 General 

This chapter is devoted to multiscale statistical modelling for steady simu­
lations of turbulent flows belonging to the RANS family. Before entering a 
detailed description of concepts and models related to this approach, it is 
necessary to briefly recall the key elements on which it relies. 

Let us first consider classical, single-scale models. They are all defined 
by a relation between the Reynolds tensor and the mean velocity field. In 
complex models, this relation can take the form of an integro-differential 
model involving one or several evolution equations. As an example, let us 
recall the famous k — e eddy viscosity model, in which the Reynolds stress 
tensor is modelled as 

R , j S ^ = c ^ ( f | + £ ) - ! « , (,.D 

where the turbulent kinetic energy k and the turbulent kinetic energy dissi­
pation rate e are evaluated solving ad hoc evolution equations, and C^ is a 
modelling parameter usually taken equal to 0.09. What is of importance in 
the present case is that both k and e are integral quantities in the spectral 
space. As an example, k is equal to 

/ • O O 

k= E(n)dK (3.2) 
Jo 

where E(K) is the energy spectrum and K denotes the wave number, with 
K — \K\. A similar expression can be found for the turbulent dissipation 
rate e: 

51 
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/>00 

e = 2v \ K2E(K)dK. (3.3) 
Jo 

The use of such a model does not make it possible to account for de­
tails in the spectral structure of the turbulent motion, since they rely on 
spectrally averaged quantities. Therefore, variations in the spectrum shape 
cannot be captured, yielding a limited capability to represent turbulence in 
far-from-equilibrium regimes. 

The aim of multiscale modelling is to alleviate this weakness by intro­
ducing new quantities which are more local in the spectral domain in order 
to better account for variations in the spectral features of turbulent fluc­
tuations. The common key idea is to introduce a splitting in the spectral 
space. This is achieved through the definition of a set of wave numbers 
K(P) where p = 1,..., N. 

Once the cutoff wave numbers have been defined, one can distinguish 
two classes of models. The first one, pioneered by Schiestel and coworkers 
[Hanjalic, Launder and Schiestel, 1980; Schiestel, 1983a; Schiestel, 1983b; 
Schiestel, 1987; Gleize, Schiestel and Couaillier, 1996] and later investigated 
by Wilcox [Wilcox, 1988a; Wilcox, 1988b] and Kim [Kim and Chen, 1989; 
Kim, 1991], are based on quantities defined as average over spectral bands. 
Anticipating discussions developed below, let us illustrate this approach by 
introducing the partial turbulent kinetic energy (see Fig. 3.1) 

/ • K ( P ) 

eW = / E(n)dK. (3.4) 
• M P - I ) 

Considering each e ^ individually, one can now account for complex fea­
tures of E(K), assuming that the number of spectral bands is large enough 
to allow for an accurate description of spectral details. 

The second model type, mainly developed at Ecole Centrale de Lyon 
in France [Cambon, Jeandel and Mathieu, 1981; Bertoglio and Jeandel, 
1986; Laporta, 1995; Parpais, 1997; Touil, 2002] and Los Alamos in the 
USA [Besnard et al, 1990; Clark and Zemach, 1995], relies on local, non-
averaged, quantities in the spectral space. Still considering the description 
of the turbulent kinetic energy, one now represents it as a set of discrete 
values (see Fig. 3.1) 
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£ (K( l ) ) , £ (K(2) ) , . . . ,E (K( i \0 ) . (3.5) 

The full turbulent kinetic energy is recovered in the first case by a simple 
sum 

k= J2 e(p) (3-6) 
p=l,N 

while, in the second case, it may require the use of a more complex quadra­
ture rule to obtain an accurate evaluation of Eq. (3.2). 

K(p-l) K(p) K 

Fig. 3.1 Illustration of the two different approaches: local approaches based on local 
spectral densities E(n(p)) and band-integrated approaches based on partial kinetic en­
ergy e ' p ' . 

It is worth noting tha t quantities involved in the first class of models 

are defined in the physical space, while those of the second class of models 

are spectral variables. 

These two approaches raise the same new closure problem of describing-

interactions and transfers in both space and wave numbers. Let us illus­

t ra te this using the turbulent kinetic energy. Both approaches lead to the 

definition of energy packets at location x in the physical space and of in­

dex p in the spectral decomposition. While the usual, single-scale closures 
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only address the issue of the destruction/production and the transport (via 
convection or diffusion) of this energy packet to another place (see Fig. 3.2), 
the multi-scale approach also introduces the problem of accounting for the 
transfer of kinetic energy toward other scales and possibly at other locations 
(see Fig. 3.3). The degree of accuracy of the representation of turbulence 
dynamics is now much higher, but the price to pay is an increased com­
plexity in the model. 

K 

Spatial transport 
(convection, diffusion) 

(lain: prnriurtlon 

Ijuss: dissipation 
Spatial transport 
(convection, diffusion) 

X 

Fig. 3.2 Schematic view of the kinetic energy transfers modelling issue for conventional 
single-scale models: energy contained in the control cell (defined as a bounded volume) 
can be transported to other spatial positions by different physical mechanisms (convec­
tion, diffusion) governed by nonlinearities or pressure effects. Black arrows symbolize 
the transfers. 

3.2 Exact Governing Equations for the Multiscale Problem 

3.2.1 Basic equations in physical and spectral space 

The first step in the derivation of governing equations for multiscale 
Reynolds stress transport equations consists in writing the transport equa­
tions for the two-point correlations of turbulent velocity fluctuations. The 
usual method for deriving statistical moments transport equations leads to 
[Hinze, 1987]: 
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Hybrid 
transport 

Pure spatial 
transport 

Fig. 3.3 Schematic view of the kinetic energy transfers within the multiscale framework: 
energy contained in the control cell (defined as a bounded region in the space/wave 
number plane) can be transferred at the same location but at different wave numbers 
(localized energy cascade represented by white arrows), or at the same wave number 
at different spatial positions (spatial transport without cascade, black arrows), or to 
another location at another scale (non-local cascade, shaded arrows). 

duj(X') 
dt 4(x)u;(xo + «S(x)«i(x')-^i + «;(x>'fe(x) dXk 

^ ( X ) — ^ ( x ^ x o + ^ x ' ) — < ( X ) « : ( X ' ) 

-—<(x)^.(X'K(x) - —<(x)t4(X'K(xo 

9X/^U'^ OX 

o2 

7P'(X>K(X) 

OXidXi 
< ( X K ( X ' ) + I/ 

d2 

dx[dxl 
7^(X)<.(X'). (3.7) 

This equation can be rewritten by introducing the midpoint x = 
(X + X')/2, which is such that X = x - £/2 and X' = x + f/2. Denning 
the two-point correlation tensor i?(x, £) = it^(x — £ /2W(x + £/2), express­
ing the space derivatives with respect to the new coordinates, neglecting 
terms which scale as |£ |2 (which is equivalent to the assumption that the 
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non-homogenous terms are neglected, leaving the equations for the closest 

homogeneous anisotropic field), and taking the Fourier transform of 

Eq. (3.7), one obtains: 

d&a d§ij ., dut ^ du.j 
—*• + Uk^1 + ̂ kjjr1- + 3>%k — at oxk oxk oxk 

1 d 

2 dxk u;(x)u;.(xx(x) + <(x)u;(X')<(X') 

?,Kfc <(X)^(X')<(X) - uXX)u'AX')u'k(X': 

P'(XK(X') + - P ' ( X ' ) < ( X ) 
9a;i J dx 

2{^jm.p,m^ 

d2 , O..9u<(x)^(xo 
dxidxi d^i d£t 

duk d 

dxm OK. 
(Kfc* i j ) (3.8) 

?tt wr^rn 

where the hat symbol is related to the Fourier transform, K is the wave 

vector, $ij = u - (X)u^(X' ) and i2 = —1. A common way of simplifying 

these equations is to eliminate the directivity in the wave number space, 

retaining only the modulus of the wave vector. This is achieved by per­

forming an average over shells |K| = Cste. Defining the spherical average 

operator in the Fourier space for an arbitrary function / as 

MI) = / f(K)dA(K) (3.9) 
•J\K,\=Cste 

where dA(n) denotes the elementary surface element (illustrated in 

Fig. 3.4), one obtains the following evolution equation for (pij(n) = 

A(ui(x)uj(x')) : 



Statistical Multiscale Modelling 57 

dA(K) 

Fig. 3.4 Sphere of constant radius in the wave number space on which spherical average 
is performed to define the spectral tensor 4>ij{^)-

d dui ditj 
'ij + Uk - ^ + $kj Tp- + 4>ik TT1-

dxk dxk dxk 

n 

+ V 

13 

dxidxi 

dxi ° 

-Vi 

dxi 

^kimj 
duk 

1 d 

(3.10) 

where 

Tijk = A < ( X W - ( X ' ) < ( X ) = A < ( X > ; . ( X K ( X ' (3.11) 

and 

e*i = A[dfk («'i(x)«i-(x')<(x)-<(x>;.(XK(xo (3.12) 

are related to triple correlations, 
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n»j = 2A j / (X' ) -£ -^ ~ P'(X) it I (3-13) 

and 

P, = .A (p'(X)<(X')) = A (V(X'K(X)) (3.14) 

contain the turbulent pressure-velocity interactions, 

Vy = " 8 ^ * , £ . = o - T ^ T + 2 ^ ^ " (3-15) 
9<(X) du'jjX') \ _1 j?-

d£i d& I 2 dx[dxt 

accounts for the viscous effects (both diffusion and dissipation), and 

d 
Ckimj = - U™ —<(X)u;.(X') I (3.16) 

is a pure non-homogeneous contribution. It is worth noting that the fol­

lowing relationships hold: 

% = 0 (3.17 ) 

+ oo 
4>,3(K)dK = Ri:i =u'lu'1 (3.18) 

o 

+oo 

0 
Tiik{K)dK = v!iv!jv!k. (3.19) 

The equation for the energy spectrum E(K) = \(J)U(K) is obtained from 

Eq. (3.10) in a straightforward manner, yielding (the wave number depen­

dency is omitted for the sake of clarity) 

d d du- d d d2E 
mE + ̂ k

E + ^ ^ + T + ^ = - ^ + v^-^-£ (3.20) 
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with 

F — x ( ®« ~~ Q—Cfcimi ) (3.21) 

£ = £ V« (3.22) 

Tfc = -Tnk. (3.23) 

3.2.2 Tfte multiscale splitting 

As explained in Sec. 2.5.1, the multiscale splitting relies on the following 
decomposition of the turbulent velocity field: 

u(x, t) = u(x) + d u ^ (x, t) + W 2 ) (x, t) + ... + W n ) (x, t) (3.24) 

fluctuating field 

In the present case of multiscale statistical modelling, the p-th part 
of the turbulent field is [Hanjalic, Launder and Schiestel, 1980; Schiestel, 
1983a; Schiestel, 1983b; Schiestel, 1987] defined as1 

u ( p ) (*,£)= f u{K,t)elK-xdn (3.25) 
JK(P-1)<\K\<K(P) 

where the set of cutoff wave numbers K(1),1 = 0, ...n is arbitrarily pre­
scribed. The p-th order low-pass turbulent field is defined as 

i=l ,p J\K\<K(P) 

K,tyK-xdK. (3.26) 

Using this definition for u(p\ its time-derivative is found to be equal to 

1 Q ( P ) = ^ +^P)/ u(K,ty^dA(K). (3.27) 
at at at J\K\=K(p) 

1 The existence of such a decomposition is assumed, and the mathematical background 
will not be discussed here. 
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The first term which appears in the right hand side of Eq. (3.27) is 

associated with several physical processes: convection, diffusion, pressure 

effects. The second term is related to the spectral flux induced by a varia­

tion of the cutoff wave number re(p). Such a variation is found in adaptive 

multiscale methods, in which the cutoff wave numbers are adapted in order 

to prevent numerical problems or the appearance of spectral bands with 

very low energy levels. 

3 .2 .3 Governing equations for band-integrated approaches 

Usual band-integrated statistical multiscale models [Hanjalic, Launder 

and Schiestel, 1980; Schiestel, 1983a; Schiestel, 1983b; Schiestel, 1987; 

Gleize, Schiestel and Couaillier, 1996] are derived by considering the partial 

turbulent kinetic energy e^ and the part ial Reynolds stresses R\j, with 

MP) , MP) 

eW= E{K)dK, R\f = faWdK. (3.28) 

Noticing tha t 

ij ~ J W \ 
re(p-l) Jn(p-1) 

(P) 

one deduces from Eq. (3.10) the following evolution equation for the part ial 

Reynolds stresses: 

^ =Vf+Ft1\-Ftj\ + ?f+?v\-?f. ( 3 - 3 °) 
/ n in iv v 

where 

Term I is related to the production resulting from the interaction 

with the mean velocity field: 

(P) _ frfip)^ , r>(p)9% 

""- -Wfei+ 'S ' tS i - (3-31) 

The total transfer term II takes into account the triadic interactions 
» 
,ij 

due to the turbulent kinetic energy cascade (term F M below), the 
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rapid term associated to Rapid Distortion effect {i.e. the linear 

coupling with the mean field, term F!fJ, below) and the possible 

variation of spectral cutoff wave numbers (term F^L below): 
3,ij 

i ^ fK(-p^ r)TL rK(m) riK(n\ 
F*f = l e^K)dK~MtJ0 C*imJ-(K)d«-««M«(p)). 

V v ' v ' " V ' 

F ( P ) F ( P ) F™. 

(3.32) 
• The pressure-induced redistribution term III is equal to 

W = / ni7-(K)d«. (3.33) 
•/re(p-l) 

• The total diffusion term IV takes into account both the molecular 
diffusion, the pressure-induced diffusion and the turbulent diffusion 

vV = _ Arc?) _(^T + dG^\+vO^_ 
*J dxk lik I dxi dxj I dxidxi 

where 

i \ 1 / * K ( P ) 

TW = 9 / ( T «* (") + T& ( " » dK ( 3 ' 3 5 ) 

G p) = / P ^ o k . (3.36) 

Term V is related to the viscous dissipation: 

T|f = / VaWdK. (3.37) 
• / K ( P - I ) 

The evolution equation for the partial turbulent kinetic energy is derived 
from Eq. (3.30) noting that e<p> = \B$: 

_ e (p) = -p(p) _|_ _p(p-i) _ _p(p) _|_ £)(P) - T 1^ (3.38) 
dt 
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where 

p(p) = hp$> (3.39) 

F^ = \FH) = \(F^+F^+F^ (3.40) 

2?W = ~v[? (3.41) 

T (P) = i T b ) (3.42) 
2 " v 

3.3 Spectra l C losures for B a n d - i n t e g r a t e d A p p r o a c h e s 

3 .3 .1 Local versus non-local transfers 

We now address the issue of closing the spectrally split equations in 

Schiestel-type approaches, i.e. in approaches based on quantities defined 

as integral over spectral bands. Before discussing the main elements of the 

most popular models, it is worth discussing some key assumptions about 

the localness of the transfers in terms of wave numbers. 

The quadratic nonlinearity in the convection term of the Navier-Stokes 

equations leads to a fully coupled problem, i.e. each spectral band is in 

interaction with all other spectral bands, as shown in Fig. 3.5. 

A first simplification consists in neglecting energy exchanges between 

distant spectral bands. This is supported by Kraichnan's theoretical analy­

sis in the asymptotic case of isotropic turbulence at infinite Reynolds num­

ber, which shows tha t 75 % of energy transfers at wave number K occur with 

wave numbers in the range [K/2, 2K]. This percentage grows up to 100 % in 

low-Reynolds number direct numerical simulations. Using this assumption, 

one deduces a simplified local (in terms of wave number) scheme for the 

energy balance in a spectral band (see Fig. 3.6). 

The spectral scheme can be further simplified using the following 

assumptions: 

(1) Turbulent kinetic energy production occurs mainly at large scales 

associated with the peak of the turbulent energy spectrum. Therefore, 
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Non-local 
transfers 

Fig. 3.5 Schematic illustration of the energy budget for the space/wave number control 
cell number p: kinetic energy can be created through coupling with the mean flow 
(instability mechanisms), it is dissipated via viscous effects, and it is transferred to other 
spectral bands via the energy cascade. Both local transfers toward adjacent spectral 
bands (shaded arrows) and non local transfers towards distant bands (dashed arrows) 
are represented. Spatial transport is not represented for the sake of clarity. 

this term must be accounted for in the spectral band which includes 

the spectrum peak and can be neglected in other spectral bands. 

(2) The main energy cascade process is a forward kinetic energy cascade 

from large scale to small ones. Inverse (backward) cascade is much 

weaker in average and can therefore be neglected. 

(3) Viscous dissipation is mainly concentrated at small scales (a typical 

lengthscale for the turbulent dissipation being the Taylor microscale). 

Subsequently, viscous dissipation must be taken into account in the last 

spectral band only (i.e. at the smallest scales) and neglected in other 

spectral bands. 

The resulting physical scheme in the spectral domain is displayed in 

Fig. 3.7, which is the cornerstone of all band-integrated multiscale models 

used in practical simulations. 



64 Multiscale and Multiresolution Approaches in Turbulence 

Fig. 3.6 Schematic illustration of the simplified energy budget for the space/wave num­
ber control cell number p, in which interactions with distant spectral bands are neglected. 
Spatial transport is not represented for the sake of clarity. 

3.3 .2 Expression for the spectral fluxes 

As proposed by Schiestel and coworkers [Hanjalic, Launder and Schiestel, 

1980; Schiestel, 1983a; Schiestel, 1983b; Schiestel, 1987; Gleize, Schiestel 

and Couaillier, 1996], an interesting first step is to close the spectral flux 

term which appears in the part ial kinetic energy equation, since it is a scalar 

term. 

The spectral transfer associated with the kinetic energy cascade can be 

modelled using a large number of models, a very simple one being the one 

proposed by Kovazsnay: 

F[% = ai V^) 5£ 3MP)) (3.43) 

where a,i is a heuristic constant to be adjusted. This closure corresponds 

to a simple spectral viscosity approach based on dimensional analysis. The 

spectral energy density E(n(p)) needs to be evaluated. It is worth noting ' 

tha t this is not a direct output of the problem, since the quantities e(/s(p)) 

are defined as integral quantities. Therefore, some additional hypotheses 

are required. A first possibility is to use an a priori analytic spectrum 

shape, such as those proposed by Pao, von Karman, Kovazsnay [Hinze, 
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Production 

K 
Dissipation 

Fig. 3.7 Simplified spectral scheme. Main assumptions are: i) turbulent production 
occurs at large scales associated with the spectrum peak, ii) the forward kinetic energy 
cascade overwhelms the backward cascade in the mean and iii) viscous dissipation is 
concentrated at very small scales. 

1987]. Using the Kovazsnay spectrum shape, one obtains: 

E{n{p)) = K^\{p)-^(l^(^^ 
4/3N 

(3.44) 

where KQ = 1.4, e and KV are the Kolmogorov constant, the dissipation rate 
and the Kolmogorov scale associated wave number, respectively. Another 
possibility is to compute E(K(P)) directly: 

E(K(p)) = /3P 

, (p) 

n{p) - K(J> - 1) 
(3.45) 

where the coefficients (3P are introduced to manage the possibility of ac­
counting for spectrum shape effects. 

The linear transfer term, which accounts for the coupling between the 
mean velocity gradient and the turbulent fluctuations, needs also to be 
closed. Following the work of Jeandel, Brison and Mathieu [Jeandel, Bri-
son and Mathieu, 1978], Schiestel and coworkers [Hanjalic, Launder and 
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Schiestel, 1980; Schiestel, 1983a; Schiestel, 1983b; Schiestel, 1987] propose 
to write: 

The spectral tensor 4>iq(K,{p)) also requires to be approximated. A simple 
expression derived from the partial Reynolds stress tensor is 

R(P) 

^ " ^ ( r i - K f r - l ) (3'47) 

where b% is another empirical shape parameter. 
The last spectral transfer term, which is associated to changes in the 

cutoff wave number values, will be discussed in Sec. 3.3.3. In the case where 
the spectral bands are static, Eqs. (3.43) and (3.46) define a closed form of 
the spectral flux of kinetic energy. 

The problem is now to model the spectral fluxes at the tensorial level, 
i.e. to work on the equations for the partial Reynolds stresses. A simple 
way to recover a tensorial model is to combine the scalar flux model and a 
non-dimensional structural anisotropy tensor : 

(3.48) 

scalar flux 
anisotropy tensor 

where the weighting parameters bp are used to account for the fact that 
anisotropy is concentrated at large scales2: they are close to one for spectral 
bands associated to large scales, and vanish at very small scales. The 
resulting form for the full spectral fluxes is 

F^=F^lBp^L_+2-(l~Bp)sJ (3.49) 

2This physical picture is in agreement with Kolmogorov's local isotropy hypothesis. 
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with 

F(P) , F(P) 

BP = bp
 1 ' % )

2 ' ^ . (3.50) 

3.3.3 Dynamic spectral splitting 

The last spectral flux term to be closed is the one associated with possible 
changes in the cutoff wave numbers. In order to derive relevant estimates 
for this flux term, it is necessary to first define the cutoff wave numbers. A 
natural way to choose the spectral bands is to tie them to some physical 
properties of the flow. 

A possible solution, which makes it possible to account for local (in 
terms of wave numbers) fluctuations of the spectrum is to choose [Hanjalic, 
Launder and Schiestel, 1980; Schiestel, 1983a; Schiestel, 1983b; Schiestel, 
1987] 

pip) 
K(JP) = K(p-l) + ap , / 2 (3.51) 

e b))3/' 

where ap are positive heuristic parameters. 
An expression for the time derivative of n{p) is retrieved from Eqs. (3.32) 

and (3.40): 

dt E{K(P)) 
(3.52) 

Differentiating Eq. (3.51) with respect to time and using Eq. (3.52) for 
the time derivative of the cutoff wave numbers, one obtains: 

dK(p) d / e (p - l ) d ( F ( p ) 

dt dt pdt V(eW)3/2 (3.53) 

*' d i ? ( P ) - V ( P ) ( e ( P ) r 5 / 2 ^ . (3-54) 
(e(p))3/2 dt 2 p y J dt 

Combining this last expression with Eqs. (3.38) and (3.45), one recovers 
the following relation for the evolution of the partial kinetic energy flux: 
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dF(P) i (FW) 2 (FM+F™ 

dt [3P e(p) I F(P) 

(p-i) , F ( P - I ) i F(P)F(P-I) E{K{p)) (F^> + F£ 2,a 

PP e(p) E(K(p-l)) \ F(P~1) I 

+ - ^ y (V{p) ~ T{p) + F^P-V - F{p)) . (3.55) 

In practice, if a dynamic spectral splitting method is used, this equation 

for F^pS> is solved for each spectral band in order to get a closed form of the 

spectral fluxes. 

3.3 .4 Turbulent diffusion terms 

Adapting the gradient model proposed by Hanjalic and Launder to the 

multiscale problem, Schiestel and coworkers [Hanjalic, Launder and Schi-

estel, 1980; Schiestel, 1983a; Schiestel, 1983b; Schiestel, 1987] propose the 

following model for the triple-correlation term: 

T S } = - ° - M f § f - ^ - (3-56) 

where k = ^ e ^ and Rqi = ~£2 R^' are the total turbulent kinetic energy 

and the total Reynolds stresses, respectively. 

The pressure-velocity correlation induced diffusion can be closed using 

Hirt 's hypothesis, leading to 

k2 dR(p) 

GP) = 4n^~- (3-57) 
% F(P) dxq

 y ' 
However, as quoted by Gleize [Gleize, 1994], this term is very often 

neglected since the underlying physics is still largely unknown the proposed 

model is believed to be a rough one. 

3.3 .5 Viscous dissipation term 

In most approaches it is assumed tha t the dissipation is mostly isotropic 

since it is mainly associated with very small scales for which Kolmogorov's 
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local isotropy assumption is assumed to hold. As a result, one can write 

T(p) = l?lp)Sij. (3.58) 

To simplify the model, the scalar dissipation term T^p' is usually as­
sumed to be equal to zero for all spectral bands (i.e. at very large scales) 
except the last one, where the viscous dissipation is evaluated thanks to 
the local equilibrium hypothesis, meaning that the viscous dissipation rate 
is equal to the kinetic energy transfer rate: 

T ( P ) = F ( P - I \ (3 59) 

3.3.6 Pressure term 

Let us now consider the pressure term. Since the pressure-induced dynamics 
is very complex, a common way to close the spectrally-split equations is to 
use the usual single-scale models for each spectral band. Performing this 
way, the pressure term is split into a linear rapid term and a non-linear slow 
term. Using the Launder-Reece-Rodi model as a corner stone (see [Piquet, 
1999] for a detailed introduction to usual single-scale closures), one obtains 
[Hanjalic, Launder and Schiestel, 1980; Schiestel, 1983a; Schiestel, 1983b; 
Schiestel, 1987]: 

= ̂ ffi+1#i-
^ = -^{P) (%- f^l -<** ( ^ " f ^ ) (3.60) 

This model can be supplemented by an additional echo-term to account 
for the presence of solid walls. 

3.4 A Few Multiscale Models for Band-integrated 
Approaches 

3.4.1 Multiscale Reynolds stress models 

The general N-level multiscale Reynolds stress model is defined by the fol­
lowing equations, which must be solved for each spectral band p = l.N 
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[Schiestel, 1983a; Schiestel, 1983b; Schiestel, 1987; Gleize, Schiestel and 
Couaillier, 1996]: 

| J#> =V^+ Ft1] " *§° + *$ + V^ ~ ^ ( 3 - 6 1 ) 

_ e ( p ) = -p(p) _)_ p(p-i) _ p(p) _|_ J)(P) _ y(p) (3.62) 

?(p) i p (p) 

1 F(P)F(P-I) E(K(P)) (F[%1]+F, 
( p - l ) _,_ p ( p - l ) 

2,ii 
PP e(p) £ ( K ( P - 1)) I FCP-D 

3_p(p) 

2~^P)~ 

1 

fp(p) _ T(P) + F{p-1] - F{pA . (3.63) 

3.4.2 Multiscale eddy-viscosity models 

The multiscale Reynolds stress models involve a large number of additional 
unknowns, and therefore induce a large extra computational cost. To sim­
plify the model while still accounting for several turbulent scales, it is possi­
ble to turn to multiscale models based on an eddy-viscosity approach, which 
will not require to solve evolution equations for each partial Reynolds stress. 

The eddy-viscosity assumption is usually written as follows: 

The partial eddy viscosity is defined as 

,(p) _ r(P) _^_ 
> p(v) <Wlrt* (3-65) 

where the Cjj^' must be adjusted empirically. 
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3.5 Spectra l C losures for Local A p p r o a c h e s 

We now address the methods based on quantities which are local in the 

wave number space, i.e. which are not denned as integral over spectral 

bands as in Schiestel-type models. It is recalled tha t an important differ­

ence between band-integrated models and local models is tha t the former 

involve quantities defined in the physical space, while the latter are based 

upon spectral variables. As a consequence, usual single-scale closures ex­

pressed in the physical space are not as useful as in the previous case, and 

spectral closures developed within the framework of two-point models of 

turbulence are preferred as a start ing point. Such methods have been pro­

posed by Jeandel, Mathieu, Bertoglio and coworkers at Ecole Centrale de 

Lyon who derived the SCIT models3 [Jeandel, Brison and Mathieu, 1978; 

Cambon, Jeandel and Mathieu, 1981; Bertoglio and Jeandel, 1986; Laporta, 

1995; Parpais, 1997; Parpais et al, 1999; Touil, 2002] and Besnard, Har­

low, Zemach and Welsh at Los Alamos, who proposed the BHRZ model 

[Besnard et al., 1990; Clark and Zemach, 1995]. 

3.5 .1 Local multiscale Reynolds stress models 

The first class of local models deals with the closure of Eq. (3.10) for the 

spectral tensor ^ ( K ) . 

Since the spectral tensor is known, bo th the advective term, the pro­

duction term and the viscous term Vij can be directly computed. All other 

terms must be closed. 

The remaining terms can be grouped into five parts : 

(1) The linear transfer term 

(2) The linear pressure term 

(3) The non-linear homogeneous transfer term, which is responsible for the 

kinetic energy cascade in the homogeneous case 

(4) The non-linear non-homogeneous transfer term, which vanishes in the 

homogeneous case 

(5) The pressure-deformation term 

A large number of closures for each of these terms can be found in 

the literature. Since an exhaustive presentation is out of the scope of the 

3 SCIT stands for Spectral Closure for Inhomogeneous Turbulence. 
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present book, it is chosen to emphasize the most recent closures still in use 

in research groups involved in the development of such multiscale models. 

3.5.1.1 Closures for the linear transfer term 

The linear transfer term is defined as 

Tpfr^^Sr [ n+ ^(^i3)dA(K). (3.66) 
OXm J | K | = C s t e OKm 

It accounts for the vortex stretching imposed by the mean velocity gra­

dient. A general requirement is tha t this term has no contribution on the 

total turbulent kinetic energy4 , i.e. 

r+co 
\ T^{x,K,t)dn = 0. (3.67) 

Jo 

A simple phenomenological model shows tha t this term is associated 

with a direct energy cascade when small turbulent structures are elongated 

along their main axis. Therefore, a simple model is proposed by Touil and 

Bertoglio [Touil, 2002] who represent this term as a spectral flux (a similar 

expression for the trace of this tensor was also advocated by Clark and 

Zemach [Clark and Zemach, 1995]): 

! 7 ^ n ( x , M ) = C i i n | S | ^ (K^- (x ,K , t ) ) (3.68) 

with 

When the constant Cn„ is taken strictly negative, this model accounts 

for the direct energy cascade only, i.e. no backscatter is allowed. Bertoglio 

and Touil obtained the optimal value Cnn = —0.03 in the case of two-

dimensional uniform shear flows. 

A much more complex model was also proposed by Cambon and cowork­

ers [Cambon, Jeandel and Mathieu, 1981] and Besnard et al. [Besnard et al., 

This constraint comes from the kinetic energy conservation property of the incom­
pressible Euler equations. 
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1990], which is expected to lead to a better description of the mean velocity 
gradient: 

TiT(X' K> *) = ( 1 ~~ nCb I ( S™~^Z (K<t>nj) + Sjn-^Z ( « 0 m ) 

'mm J 

lcb){Sm-L{K^)+siniL 

f *yfel; {KM) + {Cb ~ h) ^{K" 
7 8\ dun d 

r'-sjd^o-J^ (3-70) 

where Q, is an arbitrary parameter. This parameter is related to the am­
plitude of the mean flow/turbulence coupling. Clark and Zemach [Clark 
and Zemach, 1995] found C(, = 0.761 to yield the best results in the homo­
geneous shear case, which is very close to the value Q, = 0.77 retained by 
Touil and Bertoglio [Touil, 2002]. 

3.5.1.2 Closures for the linear pressure term 

The linear pressure term, also referred to as the rapid pressure term, is 
equal to 

Pf-=2^- -%(Ki$mj+Kj*im)dA(K). (3.71) 
oxm J\K\=Cste K 

Cambon [Cambon, Jeandel and Mathieu, 1981] and Besnard [Besnard 
et al, 1990] propose the following closure: 

c (dUi dv,j \ 2 dum , pv =Cb fe^+ torj**) - rbk^Jmn 

I rpTi (JU \ 2 (JIt 

+ (8C6 - 6) ( -^~(t>nj + -W^^in J - o( 8 c & ~ ^ij^~^nm 

5 J \ OXJ OXi J 

This model is linear with respect to the spectral tensor cf>ij. It is obtained 
using a linear model for $y with respect to tfrij which takes into account 
the incompressibility constraint and the symmetries of $i j . The parameter 
Cb is the same as for the linear transfer term. 
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3.5.1.3 Closures for the non-linear homogeneous transfer term 

This term, denoted T^L H below, is closed according to Touil and Bertoglio 
[Touil, 2002] as the sum of an isotropic and an deviatoric part: 

J.NLH = 2 ^+MC + T-NC + aT+C^ 5__ 

+ ((l-a)T+c+T-c)^- (3.73) 

where a is an arbitrary constant which is a measure of the effect of the non­
linear homogeneous transfer on the isotropy. The case a ^ O corresponds 
to the assumption that the kinetic energy cascade results in an increase of 
the anisotropy, while a = 0 is associated to pure return to isotropy. Touil 
and Bertoglio found a = 0.2 to yield the best results in the mean uniform 
shear case. Terms appearing in Eq. (3.73) are discussed below. 

• T+J*c(x., re, t) is related to the gain of kinetic energy at wave number K 
resulting from non-local energy transfers. It is parametrized using the 
Eddy Damped Quasi Normal Markovian (EDQNM) theory proposed 
by Orszag [Orszag, 1970]. 
The usual EDQNM model for this term is 

T + A A £ (x ,M) = J eKpq{^t){cxcy + cl)—E(x.,q,t)E{x,p,t) 

S(K — p — q)H(n,p, q)dpdq (3-74) 

where cx,cy and cz are geometrical parameters of the triad (re, p, q) 
(see Fig. 3.8), 9Kpq is a characteristic time scale for triple correlations 
associated to the triad and H(n,p,q) is a function which is zero for 
local triads and 1 for non-local ones5. 
The common EDQNM form for 0Kpq(x,t) is 

I — e-(ri(K)+v(p)+v{q)) 

T](K) + n{p) + T](q) 
6Kpq(x, t) = (3.75) 

5 Local triads are triads such that 

1 K K p 

R p q q 

where R is an arbitrary parameters. Touil and Bertoglio use R = 3 in their simulations. 
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Fig. 3.8 Definition of topological parameter in the EDQNM model: cx = cos(q, p),cy = 
cos(K,q) and cz = cos(p, K). 

where the eddy damping ra te T)(K) is given by an ad hoc model. Touil 

and Bertoglio use the simplest one, which was proposed by Pouquet 

and coworkers [Pouquet et a/., 1975] 

7?(K) = 0.355^ r2E{r)dr. (3.76) 

More complex forms of the damping rate, which are designed to account 

for rotation, shear or stratification effects can be found in the literature. 

T~ (x, K, t) is related to the loss of kinetic energy at wave number K 

resulting from non-local energy transfers. The corresponding EDQNM 

model is 

-MCi (x, K,t) = - / QKpq{x)(cxcy + cl) — E(jn, q,t)E(-x., K,t) 

S(K — p — q)H(n,p, q)dpdq. (3.77) 

T + £ ( x , K,t) is related to the gain of kinetic energy at wave number K 

resulting from local energy transfers. The EDQNM model is 

r K2 
T+c{x,K,t)= / dKpq(x)(cxcy+cl)— E(x,q,t)E(x,p,t) 

5(K-p-q)(l-H(K,p,q))dpdq. (3.78) 
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T £(x,K,t) is related to the loss of kinetic energy at wave number K 
resulting from local energy transfers. The EDQNM model is 

f V2 

T - £ ( x , K , t ) = - / 8Kpq(x){cxcy + c3
z) — E(x,q,t)E(x,K,t) 

5(K-p-q)(l-H(K,p,q))dpd<i. (3 .79) 

The main underlying assumptions are : (i) the EDQNM closure derived 
for isotropic turbulence holds in the present case (ii) only local transfers are 
responsible for the return to isotropy mechanisms. An important feature 
of these EDQNM-based closures is that they are fully non-local in terms of 
wave numbers: all possible interactions between distant wave numbers are 
taken into account. This is seen observing that the models are defined as 
integrals over the whole spectral domain. 

3.5.1.4 Closures for the non-linear non-homogeneous transfer 
term 

Non-homogeneous transfer terms T^ L N H are associated with spatial deriva­
tives. Therefore, a simple idea consists in approximating them as the di­
vergence of a spatial flux. An eddy-viscosity assumption yields 

iNLNH _ " ( ,.b ^4>ij T» - s ; ( ^ I (3-80) 

where the amplitude of the turbulent diffusion is tuned using the turbulent 
diffusion parameter v\. Three different expressions for the eddy viscosity 
have been proposed. In an early version of the SCIT model, Parpais and 
Bertoglio [Parpais, 1997] proposed 

b, f°° E(x,K,t) 
vh

T(x1K,t)= *• ' — dK (3 .81 
Jo A2^KsE{x,K,t)+AsT*(x,t) V ' 

where A^ = 1/0.6 and As = 3/^/2 are optimal values for two-dimensional 
shear flows. The time scale T* is defined as follows: 
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T* = Jv3~S~^m~^3, Oy. = I ( J g - g ) . (3.82) 

This is a modified version accounting for the mean shear of the eddy 

viscosity proposed by Besnard et al. [Besnard et al., f990] 

i 4 ( x , M ) = c „ / \l ( X , K ' ' dn (3.83) 

where the optimal value for cv in two-dimensional shear flows was found to 

be O.f by Besnard et al. and 0.6 by Laporta and Bertoglio [Laporta, f995] 

for two-dimensional mixing layers. The model developed by Parpais and 

Bertoglio [Parpais, f997] is observed to be more robust, i.e. the proposed 

values of the constants are found to be more general. A simpler version 

in the framework of the SCfT model is proposed by Touil and Bertoglio 

[Touil, 2002], whose form is similar to usual k — e formulations of the eddy 

viscosity: 

4 ( x , M ) = c;' t 2 l ' ' . • (3.84) 
j 0 K 2 A(X, K,t)dK 

Bertoglio and Touil found c'u = 0.5 to yield the best results in a two-
dimensional plane channel flow. 

3.5 .2 Local multiscale eddy-viscosity models 

A local multiscale eddy viscosity model was proposed by Parpais and 

Bertoglio [Parpais, f997; Parpais et al., f999] on the grounds of previous 

researches dealing with the development of the SCIT model. This model 

can be interpreted as a simplified scalar form of the tensorial local model 

described above, ft consists in closing Eq. (3.20). 

The production term associated with the interaction of the turbulent 

fluctuations with the mean velocity gradients is modelled as follows: 

-J5(x, «, t) { % , ^ - ( x ' * ) 1 ^ 1 ( 3 . 8 , 
I 3 A 1 A A 3 £ ( x , M ) + A s T * ( x , i ) ' *~ 
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where the coefficients are set equal to AQ = 0.71, A\ = 0.28 and A8 — 3/V2 
to recover good results in the homogeneous shear case. 

The full non-linear homogeneous transfer term, including the pressure 
contribution, is closed using the EDQNM theory, yielding 

/ ' 
U (x, tfxCv+CzE(x, q, t) (K

2£(x, p, t) - p2E(x, K, t)) 

x S(K — p — q)dpdq. (3.86) 

The non-homogeneous transport term is parametrized using an eddy-
viscosity closure 

^ v * ( x ' M ) — & r ~ ) (3-87) 
where the eddy viscosity is given by Eq. (3.81). 

The full viscous term is 

v d2 

-2vK2E(x,K,t) + -^^rE(x,K,t). (3.88) 

The coupling with the momentum equation for the mean velocity field is 
achieved using an eddy-viscosity closure, the turbulent eddy viscosity being 
defined as 

^(x,*)= f , ^ ( X ' M ) 

JO Ai y/K3E(x, K, t) + AST* (X, t) 

dn. (3.89) 

3.6 Achievements and Open Issues 

Simulations of turbulent flows carried out using multiscale RANS models 
are rare when compared to those based on single-scale models. The main 
reasons are that multiscale models: 

(1) involve a large number of empirical constants which must be adjusted, 
rendering their optimization more difficult than for single-scale models 

(2) induce a significant implementation effort, and the numerical treatment 
of the additional evolution equations requires some care 

(3) lead to an increase of the numerical cost. 
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Nevertheless, some significant achievements can be found in the litera­
ture. 

Band-integrated models have been applied to homogeneous turbulence 

[Schiestel, 1983b; Wilcox, 1988b; Rubinstein, 2000], to boundary layer flows 

[Wilcox, 1988b], to the supersonic flow over a swept bump in a duct [Gleize, 

Schiestel and Couaillier, 1996], to divergent channel flows [Kim, 1991], to 

plane jets [Schiestel, 1983b; Schiestel, 1987], to plane wake [Schiestel, 1987], 

to round jets [Schiestel, 1987]. Kim and Chen [Kim and Chen, 1989] applied 

a two-scale k—e model to a large number of test cases: fully developed chan­

nel flow and pipe flow , jet exhausting in a moving stream, wake-boundary 

layer interaction, wall jet, backward facing step flows, confined coaxial jet 

with or without swirl. It is worth noting tha t all these examples are based 

on two-bands, two-equations closures. The two bands are associated to 

turbulence production and turbulence dissipation, respectively. Such mod­

els require to solve 4 additional evolution equations (2 for partial kinetic 

energies, 2 for the spectral fluxes) if the full closure is considered, and only 

two if spectral bands are static. The fact tha t only very few spectral bands 

are used is coherent with the assumption tha t interactions between distant 

bands can be neglected, since there are no distant bands in this spectral 

decomposition. But, in the case where a large number of spectral bands are 

used, the issue of accounting for these interactions arise. The multiscale 

modification of tradit ional turbulence models is observed to potentially lead 

to very impressive improvements in the quality of the results in flows which 

are out of equilibrium, as shown by Gleize in the case of the flow around a 

wing at high angle of attack. The multiscale models are observed to bet­

ter capture the flow dynamics, leading to a very satisfactory prediction of 

the evolution with respect to the angle of at tack of the aerodynamic forces 

exerted on the wing (see Fig. 3.9). All models yield satisfactory results at 

low angle of at tack (fully at tached flow), while only multiscale models give 

good results at high angle of at tack (separated flows). The differences be­

tween the prediction of a traditional, single-scale model and its multiscale, 

2-bands counterpart is illustrated in Fig. 3.10 which compares iso-values of 

the predicted eddy viscosities. 

Local models have been used to compute homogeneous turbulent flows 

[Besnard et al, 1990; Clark and Zemach, 1995; Touil, 2002], turbulent 

mixing layer flow [Besnard et al., 1990], fully developed channel flow 

[Parpais, 1997; Touil, 2002], backward facing step flow [Parpais, 1997; 

Touil, 2002], wall jet [Parpais, 1997], flow in a plane diffuser [Touil, 2002], 

and flow around a 2D wing [Touil, 2002]. The number of additional trans-
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Fig. 3.9 Evolution of the mean lift coefficient versus the angle of attack. Courtesy of 
V. Gleize, ONERA, France. 

port equations used in practice is much higher than for band-integrated 

models: Touil and Bertoglio recommend to use 40 wave numbers to recover 

an accurate description of the turbulent energy spectrum. We now illustrate 

the local methods considering the computation of the subsonic turbulent 

flow around the Aerospatiale F2A wing performed by Touil and Bertoglio 

[Touil, 2002]. The chord-based Reynolds number is equal to 2.1 10G, the 

Mach number is 0.15 and the angle of attack is set equal to 13 degrees, 

which is near the maximum lift configuration. The authors solve the gov­

erning equations (compressible Navier-Stokes equations + 40-bands mul­

tiscale eddy-viscosity model) on a unstructured grid using a finite-element 

method. The mean flow features are illustrated in Fig. 3.11 which displays 

the mean streamlines in the vicinity of the wing. In the spectral domain, 

the smallest and the largest wave numbers are equal to 3/2C7 and 181597/C, 

respectively, where C is the chord of the profile. The total turbulent kinetic 

energy distribution is plotted in Fig. 3.12. It is observed tha t the multi-

scale model is able to account for the recirculation bubble and the wake 

relaxation, while usual two-equation models fail. Another striking feature 
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Fig. 3.10 Iso-values of the predicted eddy-viscosities. Courtesy of V. Gleize, ONERA, 
France. 

of the multiscale model is that the transition to turbulence is naturally 
captured, without any artificial triggering technique as in usual computa­
tions. Details of the kinetic energy spectrum in the flow are displayed in 
Fig. 3.13. It is seen here that the method is able to predict the damping 
of large-scale structures in the near-wall region, while an inertial range is 
recovered at smaller scales. The analysis of the compensated spectra re­
veals the existence of a bump at the beginning of the dissipation range of 
the spectrum, which indicates that the turbulence is out of equilibrium in 
the wake. This point is illustrated looking at Fig. 3.14 which displays an 
indicator of non-equilibrium: it is observed that turbulence is locally out 
of equilibrium everywhere, including in the far wake. This is coherent with 
the idea that the global equilibrium achieved in turbulent regions results 
from a combination of spatial transport (mainly due to advection here) and 
interscale transfers, but not to interscale transfers only. 
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Fig. 3.11 Mean flow around the F2A wing: streamlines. The recirculation bubble on 
the suction side near the leading edge is correctly captured. Courtesy of H. Touil and 
J.P. Bertoglio, LMFA, France. 

Fig. 3.12 Mean flow around the F2A wing: turbulent kinetic energy. Courtesy of H. 
Touil and J.P. Bertoglio, LMFA, France. 

As a matter of fact, multiscale approaches are not new (significant re­
sults have been obtained in the early 1980s), but some open issues remain. 
One of the main problems is the development of multiscale models well 
suited for local refinement. A classical problem, already faced when dealing 
with single-scale models, is the use of local grid refinement or non-conformal 
grids: in these cases, the conservation of basic quantities at the interfaces 
must be carefully enforced. But an important fact is that this problem 
address the development of ad hoc numerical methods and does not impact 
the physical modelling. A new problem arises if the spectral splitting is 
allowed to vary (both the number of spectral bands and the value of cutoff 
wave numbers) in adjacent grid cells. The mapping of the spectral space 
in each cell being now non-conformal, the couplings are now much more 
complex to handle and multiscale models described above need to be re­
visited. Differences in local couplings (both in space and wave numbers) 
between a fully conformal, band-integrated multiscale method and a spec­
trally non-conformal one are illustrated by comparison of Fig. 3.15 and 
Fig. 3.16. It is worth noting that in Schiestel's approach, which includes 
the dynamic spectral splitting procedure, spatial variations of the cutoff 
wave numbers n{jp) are not explicitly taken into account. The equivalent 
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Fig. 3.13 Turbulent energy spectrum predicted at different locations using the SCIT 
local multiscale model. Left: positions where the spectrum is shown. Right: spectra. 
Symbols are related the the position of the virtual numerical probes. Transition of the 
spectrum slope and the rise of the inertial range is recovered. Courtesy of H. Touil and 
J.P. Bertoglio, LMFA, France. 

Fig. 3.14 Mean flow around the F2A wing: turbulence non-equilibrium indicator. Cour­
tesy of H. Touil and J.P. Bertoglio, LMFA, France. 

problem arising in local multiscale models such as BHRZ and SCIT is a 
spectrum interpolation problem, which must preserve both the kinetic en­
ergy and main spectrum features (location and value of peaks, slope in the 
inertial range if any). It is worth noting that the use of a spatially-varying 
spectral splitting seems to be required to maximize the gain coming from 
the multiscale approach in flows in which the turbulence spectrum exhibits 
large spectral variations. The use of dynamic spectral splittings as not yet 
been considered within the framework of local multiscale models. 
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N-l N+l 

Fig. 3.15 Schematic view of local couplings in a fully conformal multiscale method. 
Arrows represent energy transfers which must be modelled. Non local couplings and 
hybrid spatial/spectral transport are not plotted for the sake of clarity. 
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Fig. 3.16 Schematic view of local couplings in a spectrally non conformal but spatially 
conformal multiscale method. Arrows represent energy transfers which must be mod­
elled. Non local couplings and hybrid spatial/spectral transport are not plotted for the 
sake of clarity. 
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Chapter 4 

Multiscale Subgrid Models: 
Self-adaptivity 

4.1 Fundamentals of Subgrid Modelling 

4.1.1 Functional and structural subgrid models 

As proposed by Sagaut [Sagaut, 2005], subgrid models can be grouped in 
two families: 

• Functional subgrid models, which aim at enforcing the correct kinetic 
energy balance of the resolved scales. The subgrid model is therefore 
not necessarily designed to provide a reliable description of the subgrid 
stress tensor, but to mimic the kinetic energy transfers. The synthetic 
subgrid force J-LES introduced in the momentum equation is such that 

I I u • Ĵ LES dVdt ~ f [ TLES :SdVdt (4.1) 
JT0 JV JT0 JV 

where [T0, T] and V are arbitrary time interval and spatial control vol­
ume, respectively (which can be simplified a pointwise values in some 
finite-difference-based approaches). Based on the understanding of the 
isotropic incompressible turbulence, functional subgrid models are de­
signed to provide a net kinetic energy drain of resolved scales. It is 
recalled that r LES refers to the exact subgrid stress tensor. This is a 
direct consequence of the dominance of the forward kinetic energy cas­
cade, which leads to a net mean energy transfer toward subgrid scales 
across the cutoff. The most popular functional models are the explicit 
subgrid viscosity models, in which the intensity of the kinetic energy 
drain is tuned via a nonlinear viscosity fsgs> leading to 

87 
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•FLES = V • (vsgs (Vu + V T u) ) (4.2) 

where the functional dependence of fsgs with respect to available in­
formation remains to be explicited. 

• Structural models, whose purpose is to provide a high fidelity represen­
tation of the subgrid tensor TLES • 

4.1.2 The Gabor-Heisenberg curse 

Since Large-Eddy Simulation technique consists in solving directly the 
large-scales of the flow and the associated dynamics, it requires to per­
form three-dimensional simulations. The very reason for that is that the 
dynamics of the turbulent large scales is intrinsically three-dimensional. As 
a consequence, LES practitioners are seeking for subgrid models whose as­
sociated computational cost will be small with respect to the one required 
to solve the Navier-Stokes equations for the large scales. 

Consequently, almost all existing subgrid models expressed in the phys­
ical space are basically local in that sense that their value at location x 
and time t will depend only on quantities taken at the same location and 
the same time. This spatial localness is wanted for the sake of computing 
efficiency and data storage minimization. But the quest for localness has a 
direct consequence, which originates in the Gabor-Heisenberg uncertainty 
principle: the more local in space the subgrid model will be, the less ac­
curate in the wave number space it will be. The uncertainty principle is 
illustrated in Fig. 4.1. 

Let us note that the localness issue in the physical space is also faced 
when the question of the accuracy of the discrete approximation of space 
derivatives involved in the computation of subgrid models is addressed. 
For local numerical methods (finite difference, fine volume, finite element), 
the order of accuracy of discrete operators is directly tied to the number 
of degrees of freedom used. The larger is this number, the higher is the 
accuracy, but the wider is the stencil of the discrete operator, and therefore 
the less local is the discrete operator (see Fig. 4.2). It is also worth noting 
that the numerical error is concentrated at small scales (i.e. high wave 
numbers). 

This lack of accuracy in the spectral space has a direct impact onto the 
efficiency of the model. It must be remembered here that the ideal subgrid 
model has to answer the two following questions: 
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K 

E(K) 

>x 

iK^VNk 

Fig. 4.1 Illustration of the Gabor-Heisenberg uncertainty principle. Choice of the mesh 
size Ax in the physical space automatically leads to the definition of the maximum 
wavenumber fcmax- The uncertainty principle state that the product Ax • Kmax, which is 
equal to the area of the control cell in the upper right corner of the figure, is an invariant. 

(1) Is the flow at position x and time t under-resolved, i.e. are they some 
subgrid scales which must be modelled? 

(2) If subgrid scales exist, what is the amplitude of the kinetic energy trans­
fer across the cutoff (functional model approach) or what is the struc­
ture of the instantaneous subgrid tensor (structural model approach)? 

The first question is as important as the second one, and it cannot 
be answered without using additional information. As a matter of fact, 
some foreknowledge about the characteristic features of an under-resolved 
turbulent field is required to perform the diagnosis and to conclude on the 
necessity of switching a subgrid model on. But using some theoretical or 
empirical prior knowledge during the simulation is not the whole task: the 
computed solution must be analyzed to yield a definitive answer. Subgrid 
models which have the capability of answering this question are referred to 
as self-adaptive models, because they are able to distinguish between fully 
resolved regions in which the simulation is a Direct Numerical Simulation 
and under-resolved regions, in which a subgrid model is required. 

The two main strategies to solve this very difficult problem are the 
following: 



90 Multiscale and Multiresolution Approaches in Turbulence 

Ax 
-4——•> 

o- o 

1 -S 3 
33 * <4-

-1/2 Ax +l/2Ax 

i-1 

-l/12Ax +3/4Ax 

o • • 

i+1 

•2Ax-

•4Ax> 

-o- •O 

-3/4Ax +1/12AX 

-o 
i-2 i-1 i+1 i+2 

Fig. 4.2 Stencils and coefBcients of the second-order accurate (top) and fourth-order 
accurate (bottom) centered finite-difference scheme for the first order derivative d/dx at 
grid point number i. The increase of the stencil width is a natural consequence of the 
accuracy gain, leading to a less local operator, which rises new problems near boundaries 
of the computational domain. 

the use of additional evolution equations for new variables which are 

tied to the subgrid scales, like the subgrid kinetic energy. Such a t rans­

port equation automatically makes the subgrid model non-local in both 

space and time, because of the memory effect due to advection along 

the trajectories. 

the use of a multilevel approach, which is based on the decomposition 

of the resolved velocity field into several wave number bands. These 

bands are then used to carry out some comparisons with the external 

knowledge dealing with turbulent under-resolved fields. 

The first approach (introduction of new physical variables) leads to the 

definition of new subgrid characteristic scales (velocity scale, t ime scale, 

length scale), but is not automatically associated to a multiresolution-type 

technique based on an advanced spectral splitting of the solution. These 

subgrid models will not be discussed in the present book, the emphasis 

being put on the second strategy. 

It is important to note tha t the physical localness/spectral accuracy 

problem is the main one here. The energy transfers associated with the 
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kinetic energy cascade being mostly local, the resolved scales which are 
responsible for the largest part of the energetic interactions with subgrid 
scales are the smallest ones. An accurate subgrid model is therefore ex­
pected to mainly depend upon these scales and to act on them, meaning 
that it is local in the wave number space. This need for spectrally local­
ized subgrid models naturally open the way for models based on a spectral 
splitting of the resolved velocity field, in which large resolved scales will be 
separated from the small resolved ones. This splitting of the resolved field 
is a common feature shared by all subgrid models and closure strategies 
discussed in the present chapter. What is specific of each multilevel model 
or strategy is the way this spectral splitting is used to improve the usual 
single scale subgrid models, in which the resolved velocity field is treated 
as a monolithic block. 

The self-adaptive character of the subgrid closures discussed below 
comes from the fact that being localized in the spectral space, they are 
more sensitive to the local state (fully resolved/under resolved) of the flow. 
A fully resolved flow being characterized by a very low energy level at the 
smallest resolved scales, an ideal spectrally localized subgrid model should 
be able to give an exact answer to the question of the existence of the 
subgrid scales. The increased sensitivity with respect to the small scales 
which are responsible for most of the energy transfers toward the unresolved 
scales is also expected to result in a better capability to account for non-
equilibrium effects (e.g. rotation effects) which modify the energy transfer 
rate toward the subgrid scales. 

Let us consider a generic single scale subgrid model expressed as 

7v = C7fo(A,u) (4.3) 

where C is an arbitrary constant, A is the cutoff length scale associated 
with the LES resolution and u is the full resolved field. The model / is 
the most general one, and can have an integro-differential expression. One 
can also write A = A and H^1' according to the multilevel formalism 
introduced in Sec. 2.5.1. Such a model will be classified as a single scale 
one, since only one cutoff level and one cutoff length are involved. 

Two different but compatible strategies can be followed to improve this 
model using a multilevel decomposition. First, one can try to use the 
spectral splitting to optimize the value of the constant C, which is now 
a function of both space and time. Such a relationship can be formally 
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written as 

C^V1', :< 2 )
 TT(2) u^,...)ftj(A,u). (4.4) 

Such models are referred to as dynamic models, using the term coined by 
Germano and coworkers. They represent the lowest degree of modification 
of single-scale closures, and can be interpreted as an optimal projection 
of the true subgrid tensor T^ onto the space spanned by / y ( A , u ) . The 
optimality is here tied to the definition of an error measure and the mini­
mization of the corresponding residual. Two families of dynamic procedures 
are presented below: procedures based on the Germano identity (Sec. 4.2) 
and procedures based on self-similarity assumptions (Sec. 4.3). In both 
cases, the error estimate to be minimized is obtained inserting the subgrid 
model into an exact relation fulfilled by the exact subgrid term. Since the 
model is not perfect, the original relation is not satisfied, and a residual can 
be computed, which is a measure of the committed modelling error. The 
constant C is then chosen so as to minimize a given norm of this residual 
(see Fig. 4.3). 

Model 1 

Model 2 

Optimal constant 
for model 2 

Optimal constant 
for model 1 

Fig. 4.3 Illustration of the dynamic procedure principle. The two lines (black and 
grey) are related to different subgrid models, whose constant are adjusted dynamically. 
It is important noting that both the minimal error and the value of the constant are 
model-dependent. 
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The second strategy consists in modifying the model itself, rendering it 
sensitive to the spectral splitting of the resolved field, yielding 

r ^ C ' / . ^ . u W , ^ , ^ ) , . . . ) . (4.5) 

The arbitrary constant C" is a priori not equal to the one of the original 
single-scale model, C. The most complete frameworks are the Variational 
Multiscale method proposed by Hughes (Sec. 4.4) and the Multilevel Large-
Eddy Simulation method of Terracol and Sagaut (Sec. 5.4.2). 

The two strategies can of course be coupled, leading to the definition of 
a dynamic multiscale model: 

r , ] = C ' ( A W u W , A ( 2 l u P ) 1 . . . ) / , ) ( A ( 1 )
1 u W , A ( 2 ) , u ( 2 ) , . 4 (4.6) 

4.2 Germano-type Dynamic Subgrid Models 

This section is devoted to the most popular dynamic procedure for ar­
bitrary constant adjustment, i.e. those relying on the Germano identity. 
This technique was proposed by Germano and coworkers in the early 1990s 
[Germano et al., 1991; Germano, 1992; Germano, 1996; Germano, 2001], 
and has been extensively used and improved by many research groups, the 
most active one on this topic being certainly the Center for Turbulence 
Research at Stanford University. 

4.2.1 Germano identity 

The Germano identity is an exact relation which ties the subgrid tensor at 
different levels of filtering [Germano et al, 1991; Germano, 1992; Germano, 
1996; Germano, 2001]. Several alternative formulations exist, which are 
discussed below. 

4.2.1.1 Two-level multiplicative Germano Identity 

We first consider the multiplicative Germano identity. For the sake of 
simplicity, but without any loss of generality, the presentation is restricted 
to the case of the two-level Germano identity. The generalized formulation 
for an arbitrary number of filtering levels will be discussed later on. The 
filtering paradigm is used in this section to model the large-eddy simulation 
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scale separation at each resolution level. But is is important noting that the 
Germano relation is more general and is not restricted to the convolution 
filtering case and formally equivalent expression can be straightforwardly 
obtained using alternative definitions for the scale separation operator, such 
as projection onto a truncated basis. 

A sequential application of two filters, G\ and Gi to the exact solution 
u yields 

T(2) GI * u ( i ) G2 *C?i *u. (4.7) 

Here, u ' 2 ' corresponds to the resolved field for the double filtering 
(G2*) o (Gi*). The two filtering levels are illustrated in Fig. 4.4. 

Fig. 4.4 Spectral splitting for the basic Germano dynamic procedure. The scale sepa­
ration operator is chosen here to be a sharp cutoff filter. 

As proposed by Germano [Germano, 1986], the subgrid tensor associ­
ated with the second filtering level is defined as the following generalized 
central moment: 

r ( 2 ) 
UiU- :(2) _ 5^(2)577(2) 

The part of the subgrid tensor associated to the second filtering level 
which can be computed from the resolved field at the first filtering level is 
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CW=G2* (iT^uJ^-ui^uJ^. (4.9) 

Combining these two relations, one obtains the Germano identity, which 
is an exact relation between the subgrid tensors computed at two different 
filtering levels: 

T„ W -a„ + M2) , r(2) 
n 

G2*^> +C?> (4.10) 

This relation can be interpreted as follows. The subgrid tensor at the 
second filtering level is equal to the sum of the subgrid tensor at the G\ level 
filtered at the G2 level and the subgrid tensor at the G2 level calculated 
from the field resolved at the G\ level. This relation is local in space and 
time and is independent of the filter used. This identity can be referred to 
as the multiplicative Germano identity [Germano, 2001], because it is based 
on a sequential application of the two filters. 

4.2.1.2 Multilevel Germano Identity 

We now present the general, iV-level Germano identity (see [Sagaut, 
2005]). Let us consider N filtering levels, Gi,i = l,iV, with associ­
ated characteristic lengths Ai < A2 < ... < AJV [Germano, 1998; 
Terracol, Sagaut and Basdevant, 2000; Sagaut et ai, 2000]. 

rn\ 
We define the nth level filtered variable <j> (where <j> is a dummy 

variable) as 

-r(«) = G n * G „ _ i * . . . * G i *$ = Qi-kcj) (4.11) 

with 

££ = G „ * G „ _ i * . . . * G m i £ £ = J d , V m e [ l , n ] . (4.12) 

Let T>™' = ujuj(n) — ul Uj be the subgrid tensor associated to the 
nth filtering level. The classical two-level Germano identity (4.10) reads 

(n+l) _ n in) An+l) , . , , i 
Tij -Gn+i-kT^ +Ltj (4.1.5) 

where 

4™+1) = Gn+1 * (u^uf) - u{:+l)uf+1\ (4.14) 
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Simple algebraic developments lead to the following relation between 

two filtering levels n and m, with m < n: 

k~ m+l ,n — 1 

resulting in a fully general multilevel identity. 

4.2.1.3 Generalized Germano Identity 

The basic formulation of the germano identity can be further extended 

by considering an additional operator, which can be a non-linear integro-

differential one (see [Sagaut, 2005; Morinishi and Vasilyev, 2002]). A more 

general multiplicative identity is obtained by applying the arbi trary oper­

ator C to the basic identity, yielding 

£ { [ G 2 * G i * , S ] ( u i , u J - ) ] } = ^{ [G ! 2* ,B]o (Gi* ) (u i , u j ) 

+ ( G 2 * ) o [ G i * , B ] ( u i ) u j ) } - (4.16) 

where [.,.] is the commutator defined by relation (2.3), and B is the bilin­

ear operator: B(a,/3) = a/3. For linear operators, we get the simplified 

formulation 

£ { [ G 2 * G i * ) B ] ( u i , U j ) ] } = >C{[G2* ) 5]o(Gi*)(u i ) « J 0} 

+ £{(G2*)o[G1*,B}(ui,uj)}. (4.17) 

This new way of extending the Germano relation can be easily combined 

with the general N-level Germano identity, leading to a fully general exact 

relation. 

4.2 .2 Derivation of dynamic subgrid models 

We now show how, using one of the Germano identities, the optimal value 

of the constant C in Eq. (4.3) [Germano et al., 1991]. The first step consists 

in denning two scale separation levels, associated with the two operators G\ 

and G2 . The first level usually represents the scale separation intrinsically 

introduced by the simulation1 while the second one, very often referred to as 

the test level, is reached in practical simulation by applying an explicit scale-

separation operator to the computed solution. The second step consists 

in assuming t ha t the same subgrid model with the same constant can be 

1This is the so-called effective filter or grid filter, which originates in the combination 
of the numerical grid and the numerical method. 
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applied to parametrize the subgrid motions at the two levels of resolution, 
yielding 

r « = C / . . ( A ( 1 ) , u W ) (4.18) 

if =CflJ(A
i2\uW) (4.19) 

where fy denotes a generic subgrid model. The error estimate is obtained 
inserting Eqs. (4.18) and (4.19) into the Germano identity (the two-level 
multiplicative Germano identity (4.10) is used here to illustrate the pro­
cess) , leading to the definition of the residual Eij 

Ei3 = CfuiA™, u<2>) - G2 * (C/ I , (A ( 1 ) , uW; 
( r> , M 1 ) - ( l ) ^ - (2)-(2) \ 
( G 2 * ( u ) >u) 'J -u) 'u) 'J. 

(4.20) 

The key idea is to find the local (in both space and time) value of C 
which minimizes the residual E^, which is zero in the ideal case where the 
subgrid model fy is perfect. Two difficulties arise immediately. 

The first one is that the constant appears inside the scale separation 
operator in the second term in the right hand side of Eq. (4.20). Solving 
this problem leads to the definition of the non-local Fredholm problem of 
the second kind. A method based on the resolution of this new problem was 
proposed by Ghosal et al. [Ghosal et al., 1995]. But, since this procedure 
requires a non-trivial code development and induces a significant extra-
computational cost, almost all authors assume the parameter C is varying 
slowly enough in space, leading to 

E^ = C (7y-(A(2),u(2>) - G2 * / „ ( A ( 1 ) , u W ) 

M, (2 ) 

(G2 * (u^uf _(2)_(2) 
(4.21) 

The second problem is that Eq. (4.21) results in six relations, while 
there is only one adjustable parameter. A first solution is to consider a 
tensorial constant Cy, each component being directly computed from the 
preceding relation. Numerical experiments show that this solution is not 
very satisfactory from a numerical point of view. To alleviate this problem 
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in a more satisfactory way, Germano proposes to introduce an auxiliary 

tensor Aij, and to search for the value of C tha t will minimize the scalar 

quanti ty E^A^. Germano and coworkers [Germano et at, 1991] originally 

used Aij = Stj , while Lilly [Lilly, 1992] later chose A^ = Eij, leading to 

the definition of the following least-square minimization problem: 

Find C(x,t) such that EijEij is minimum. 

Since EijEij is a quadrat ic convex function of C, the existence and the 

uniqueness of the optimal solution, noted C j , is guaranteed. It is computed 

in practice writing 

dEijEij _ Q ( 4 2 2 ) 

dCd 

The solution is 

£ ( 2 ) M ( 2 ) 

C d = ' ' ' ' • (4.23) 

This optimal definition in the least-square sense is observed to be 

efficient in practice. Dynamic models are found to have powerful self-

adaptivity capabilities: 

• They vanish in regions where the flow is fully resolved. 

• They recover the theoretical asymptotic behaviors in some critical re­

gions, e.g. they decay correctly in the very near wall region in equilib­

rium boundary layers. 

• They can, at least partially, take into account the numerical error, e.g. 

the kinetic energy rate damping of the resolved scales will be reduced 

if a non-negligible numerical dissipation is present. 

But all dynamic models suffer the same stability weakness: the dy­

namic constant Ca defined by Eq. (4.23) is observed to take some quasi-

infinite values at some points, and it also can take negative values at the 

same location for long times. To remedy these problems, a large num­

ber of regularization procedure have been investigated (see [Sagaut, 2005; 

Germano, 2001] for reviews): clipping between arbi t rary bounds, spatial 

averaging over neighboring nodes or homogeneous direction or along 

streamlines. All these smoothing procedures make the dynamic constant 
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more regular and alleviate most of the numerical problems, but the regu­
larized constant is not the optimal one anymore. 

4.2.3 Dynamic models and self-similarity 

The use of the same value of the constant for the subgrid model at the two 
filtering levels appearing in Eqs. (4.20) and (4.21) implicitly relies on the 
two following self-similarity assumptions: 

• The two cutoff lengths are such that both cutoffs are located in the 
inertial range of the kinetic energy spectrum; 

• The filter kernels associated to the two filtering levels are themselves 
self-similar. 

These two constraints are not automatically satisfied, and the validity 
of the dynamic procedure for computing the constant requires a careful 
analysis. 

4.2.3.1 Turbulence self-similarity 

Meneveau and Lund [Meneveau and Lund, 1997] propose an extension of 
the dynamic procedure for a cutoff located in the viscous range of the 
spectrum. Writing the constant of the subgrid-scale model C as an explicit 
function of the filter characteristic length, the Germano-Lilly procedure 
leads to 

C ( A ( 1 ) ) = C ( A ( 2 ) ) = C d . (4.24) 

Let r) be the Kolmogorov length scale. It was said in the introduction 
that the flow is fully resolved if A = r\. Therefore, the dynamic procedure 
is consistent if, and only if 

J i m Cd = C(n) = 0. (4.25) 
A ( 1 ) ^ j ) 

Numerical experiments carried out by the two authors show that the 
Germano-Lilly procedure is not consistent, because it returns the value of 
the constant associated to the test filter level 

Cd = C(A{2)) (4.26) 
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yielding 

J i m Cd = C(rri)^0, r = A ( 2 ) /A ( 1 ) . (4.27) 
A ( 1 ) ^ j ) 

Numerical tests also showed that taking the limit r —» 1 or computing 
the two values C(A) and C(rA) using least-square-error minimization with­
out assuming them to be equal yield inconsistent or ill-behaved solutions. 
A solution is to use prior knowledge to compute the dynamic constant. 
A robust algorithm is obtained by redefining the Germano identity based 
residual as follows: 

El3 = Cv - C(A (1 )) ( s ^ V l A i ^ , ^ ) - G2 * / y ( A ( 1 ) , u W ) ) 

(4.28) 

where ^(A , r) = C(r A )/C(A ) is approximated by the following sim­

ple analytical fitting in the case r = 2: 

3(A{1), 2) « max(100, HT*), x = 3.23(i?e"^?2 - ReZ°£2) (4.29) 

where the mesh-Reynolds numbers are evaluated as: 

. 2 _ m / c i i \ 2 
( A W ) |S ( 1 ) | 4 ( A ( 1 ) ) |S ( 2 ) | 

^ A ^ = ~ ' Re2KW y 

Other cases can be considered where the similarity hypothesis between 
the subgrid stresses at different resolution levels may be violated, leading to 
different values of the constant [Porte-Agel, Meneveau and Parlange, 2000]. 
Among them: 

• The case of a very coarse resolution, with a cutoff located at the very 
beginning of the inertial range or in the production range. 

• The case of a turbulence undergoing rapid strains, where a transition 
length A T OC S'_3//2e1/2 appears. Here, S and e are the strain mag­
nitude and the dissipation rate, respectively. Dimensional arguments 
show that, roughly speaking, scales larger than A T are rapidly distorted 
but have no time to adjust dynamically, while scales smaller than A T 
can relax faster via nonlinear interactions. 

For each of these cases, scale dependence of the model near the critical 
length scale is expected, which leads to a possible loss of efficiency of the 
classical Germano-Lilly dynamic procedure. 



Multiscale Subgrid Models: Self-adaptivity 101 

A more general dynamic procedure, which does not rely on the assump­
tion of scale similarity or location of the cutoff in the dissipation range, was 
proposed by Porte-Agel et al. [Porte-Agel, Meneveau and Parlange, 2000]. 
This new scale-dependent dynamic procedure is obtained by considering 
a third filtering level (i.e. a second test-filtering level) with a characteristic 

(3) (2) 

cutoff length scale A > A . Writing the Germano identity between 

level A and level A (3) leads to 

W=G3* fe1^)- s(3)-(3) 

C ( A ( 3 ) ) / y ( A ( 3 ) , u ( 3 ) ) - C ( A ( 1 ) ) G 3 * / y ( A ( 1 ) , u W ) . (4.30) 

By taking 

M , f = (A(A(3), A ( 1 )) /y(A ( 3 ) ,u(3>) _ A ; ( A ( V 1 ^ ' ) (4.31) 

with 

(3) 

A ( A < 3 \ A « ) = ^ y (4.32) 
C ( A W ) 

we obtain the following value for the constant at level A : 

r C 1 ^ 
£ ( 3 ) M ( 3 ) 

C ( A W ) = ' ' * (4.33) 

By now considering relation (4.23), which expresses the Germano iden-
(2) 

tity between the first two filtering levels, where M^ is now written as 

M « = fA(A ( 2 ) ,A ( 1 )) / y(A ( 2 ) ,u( 2)) - G 2 * / . - ( A ( 1 ) , u « ) ) (4.34) 
and by equating the values of C(A ) obtained using the two test-filtering 
levels, we obtain the following relation: 
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which has two unknowns, A(A , A ) and A(A , A ). In order to 
obtain a closed system, some additional assumptions are needed. It is 
proposed in [Porte-Agel, Meneveau and Parlange, 2000] to assume a power-
law scaling of the dynamic constant, C{x) oc xr, leading to 

C(aA{1)) = C ( A ( 1 ) K - (4-36) 

For this power-law behavior, the function A(.,.) does not depend on the 
scales but only on the ratio of the scales, i.e. A(x,y) = (x/y)r. Using this 
simplification, (4.35) appears as a fifth-order polynomial in C(A ). The 
dynamic constant is taken equal to the largest root. 

This scale-dependent dynamic model needs to be stabilized, as other dy­
namic models. Averaging over homogeneous direction was implemented by 
Porte-Agel and coworkers, resulting in a stable subgrid closure which was 
applied to a neutral atmospheric boundary layer flow [Porte-Agel, Mene­
veau and Parlange, 2000]. The time-averaged profiles of the dynamic con­
stant computed at three different levels using the scale-dependent procedure 
are plotted versus the distance to the wall in Fig. 4.5. It is interesting to 
note the value computed using the traditional Germano procedure is very 

—(2) 

close to the one obtained at the test filter level, i.e. C(A ), and not at the 

grid filter level, C(A ), showing the weakness of the original procedure. 
Non-dimensional gradient of the mean streamwise velocity profile com­

puted using the scale-dependent procedure is compared with the one com­
puted using the traditional approach in Fig. 4.6. The scale-dependent 
procedure is observed to yield a better prediction in the vicinity of the 
wall (the gradient is nearly constant and close to one) than the traditional 
procedure, which yields erroneous results because the test filter is located 
outside the inertial range in this region. 

The scale-dependent dynamic procedure is also observed to greatly im­
prove the prediction of second-order statistical moments, leading to a very 
accurate prediction of the velocity spectrum (see Fig. 4.7). 

The scale-dependent procedure is observed to be efficient but the need 
for homogeneous directions precludes its use in complex three-dimensional 
configurations. To alleviate this problem, Bou-Zeid and coworkers [Bou-
Zeid, Meneveau and Parlange, 2005] recently coupled the scale-dependent 
dynamic model with the Lagrangian averaging technique introduced by 
Meneveau [Meneveau, Lund and Cabot, 1996]. Using this advanced regu-
larization technique, Eq. (4.35) is replaced by 
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0.15 

Fig. 4.5 Vertical distribution of the time-averaged value of the dynamic constant ob­
tained using the scale-dependent multilevel dynamic procedure in a neutral atmospheric 
boundary layer flow. Solid line: C (A ( 1 ) ) ; Dashed line: C(A ( 2 ) = 2A ( 1 ) ) ; Dash-dotted 

line: C*(A (3) 4A ). The dotted line corresponds to the value obtained using the 
traditional Germano-Lilly procedure. Reproduced from [Porte-Agel, Meneveau and Par-
lange, 2000] with permission of Cambridge University Press. 

£ (2)M (2) 

Lag 

( 3 ) A / f ( 3 ) \ M}VM, ij I Lag 
£ ( 3 )M ( 3 ) \ 

, J lJ /Lag < ' O w = ° 
(4.37) 

where (0)LaK denotes the Lagrangian average of the variable <j> along stream­
lines, and is defined as 

(0) Lag (x(t'),t')W(t-t')dt'. (4.38) 

The function W(t — t1) is introduced to account for vanishing memory 
effects. In practice, an exponential decay is assumed to adequately repre­
sents auto-decorrelation due to the chaotic nature of turbulent motion. 

The Lagrangian averaged quantities are therefore solutions of the fol­
lowing advection-relaxation equation: 

d< 'Lag 

at u 
(1) VW Lag yi(l) <</>> Lag (4.39) 
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Fig. 4.6 Non-dimensional gradient of the mean streamwise velocity from simulations 
that use the scale-dependent dynamic procedure at three resolutions: fine grid (dot-
dashed line), medium grid (long-dashed line) and coarse grid (short-dashed line). Results 
obtained on the fine grid using the traditional dynamic procedure corresponds to the solid 
line. The vertical dotted line corresponds to the classical log-law, which is expected to 
hold in the lower 10 % of the computational domain. Reproduced from [Porte-Agel, 
Meneveau and Parlange, 2000] with permission of Cambridge University Press. 

where T^ is an ad hoc relaxation characteristic time scale associated with 
the level of filtering at which the variable 4> under consideration is defined. 
This time scale is defined for quantities of interest here defined at the pth 
level of filtering as 

-1/8 

'.M™MV) \ . (4.40) r^ = A ( 1 )?f^M^)L a g 
Lag 

This procedure is implemented in an efficient way in practice using the 
following discrete scheme 

(^>Lag (*,tn+1) = e ( 1 ) 0 ( x , r + 1 ) + (1 - e « ) (0)Lag ( x - u < 1 ) ( x ) t
n ) A t ) t

n ) 
(4.41) 

where At is the time step of the numerical integration, the time tn is equal 
to nAt, and the filtering-level-dependent weighting parameter is defined as 

AP) 
At/T&) 

1 + At/T(P) 
(4.42) 
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Fig. 4.7 Normalized streamwise velocity spectra versus normalized wave number at 
different heights § computed using the scale-dependent dynamic procedure. Fine grid: 
solid line; coarse grid: symbols. The transition between the —1 and the —5/3 slope is 
well recovered, while the traditional dynamic model fails. Reproduced from [Porte-Agel, 
Meneveau and Parlange, 2000] with permission of Cambridge University Press. 

Therefore, only one interpolation step is needed in practice to compute 
(</>)L (x — uy) (x , t n )A t , t n ) , leading to a very small computational over­
head. 

This Lagrangian scale-dependent dynamic model was successfully ap­
plied in atmospheric boundary layer flows with smooth and rough surfaces 
by Bou-Zeid and coworkers [Bou-Zeid, Meneveau and Parlange, 2005]. A 
schematic view of the application to a boundary layer with a sudden change 
in the wall surface roughness is displayed in Fig. 4.8. 

The computed mean value of the dynamic constant and the predicted 
subgrid dissipation using the Lagrangian-averaged scale-dependent proce­
dure are referred to their counterparts obtained using the original scale-
dependent procedure in Fig. 4.9. The Lagrangian-average procedure is 
observed to yield a better adaptation of the dynamic procedure with re­
spect to the local feature of the flow. As indicated at the end of Sec. 4.2.2, 
the regularization procedures used to stabilize the dynamic constant calcu­
lation result in a loss of optimality, because the spatial averaging process 
destroy the link with local features of the flow. The Lagragian averaging 
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Fig. 4.8 Schematic view of the computational domain in the case of a boundary layer 
flow with varying surface roughness. Reproduced from [Bou-Zeid, Meneveau and Par-
lange, 2005] with permission of American Institute of Physics. 

alleviates this problem, since the averaging is performed along streamlines, 
which carry physical information. Therefore, the optimality is preserved in 
a much better way. 

4.2.3.2 Scale-separation operator self-similarity 

We now consider the problem of the filter self-similarity. Let Q\ = G\ and 
Q\ be the filter kernels associated with the first and second filtering level. 
We assume that the filter kernels are rewritten in a form such that: 

u ( 1 ) (x )=g i
1 *u(x ) = | ( ? 1

1 

u ( 2 ) ( x ) = ^ 2 * u ( x ) = 

CI 
rd) u(0# 

Qi [ 4 # i urn-
A 

(2) 

(4.43) 

(4.44) 

We also introduce the test filter G2, which is defined such that 

u{2) = Q\ * u = G2 * uW = G2 * Gi * u. (4.45) 
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Pig. 4.9 Sensitivity of subgrid model to surface roughness for a high-to-low rough­
ness transition, (a): plot of the dynamic coefficient for the Lagrangian-Averaged Scale-
Dependent (LASD) dynamic model referred to the one computed using the Planar-
Averaged Scale-Dependent (PASD) procedure. Here, planar-average refers to average in 
the homogeneous direction of the flow, (b): ratio a the associated subgrid dissipation. 
Reproduced from [Bou-Zeid, Meneveau and Parlange, 2005] with permission of American 
Institute of Physics. 

The filters Q\ and Q\ are self-similar if and only if 

*ltv) = ^® r = A ( 2 ) / A W . (4.46) 

Hence, the two filters must have identical shapes and may only differ by 

their associated characteristic length. The problem is tha t in practice only 

G2 is known, and the self-similarity property might not be a priori verified. 

Carat i and Vanden Eijnden [Carati and Vanden Eijnden, 1997] show tha t 

the interpretation of the resolved field is fully determined by the choice of 

the test filter G2 , and tha t the use of the same model for the two levels of 

filtering is fully justified. This is demonstrated by re-interpreting previous 

filters in the following way. Let us consider an infinite set of self-similar 

filters {Fn = F(ln)} defined as 

Fn(x) = ~T . 
r " \ / 

,ln — r IQ (4.47) 
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where J7, r > 1 and lo are the filter kernel, an arbitrary parameter and a ref­
erence length, respectively. Let us introduce a second set {F£ = F*(l^)} 
defined by 

F*=Fn*Fn-1*...*F.0o. (4.48) 

For positive kernel T, we get the following properties: 

• The length /* obeys the same geometrical law as ln: 

C = < - i . and l*n = ^==ln. (4.49) 

\/rz — 1 

• {F£} constitute a set of self-similar filters. 

Using these two set of filters, the classical filters involved in the dynamic 
procedure can be defined as self-similar filters: 

Fn(ln) (4.50) 

^ - i ( C - i ) (4.51) 

Kiln)- (4-52) 

For any test-filter Gt = G% and any value of r, the first filter operator 
Q\ = G\ can be constructed explicitly: 

d = G t(A/r) * G t (A/r 2 ) * ... * G t(A/r°°). (4.53) 

This relation shows that for any test filter of the form (4.50), the two 
filtering operators can be rewritten as self-similar ones, justifying the use 
of the same model at all the filtering levels. 

4.3 Self-Similarity Based Dynamic Subgrid Models 

We now present other dynamic procedures for constant adjustment which 
do not use the Germano identity. They are based on other exact relation­
ships. A common feature of the procedures discussed below is that they 
are all based on properties of the statistical self-similar state of isotropic 

G2(A) = 

^ ( A ( 1 ) ) = 

# ( A ( 2 ) ) = 
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turbulence. They are therefore expected to be useful for fully developed tur­

bulent flows at scales small enough to satisfy the Kolmogorov local isotropy 

hypothesis. 

4 .3 .1 Terracol-Sagaut procedure 

This method proposed by Terracol and Sagaut [Terracol and Sagaut, 2003] 

relies on the hypothesis tha t the computed resolved kinetic energy spectrum 

obeys a power-law like 

E(K) = E0K
a (4.54) 

where a is the scaling parameter. It is worth noting tha t Barenblat t [Baren-

blatt , 1996] suggests tha t both EQ and a might be Reynolds-number de­

pendent. A more accurate explicit form for the kinetic energy spectrum 

is 

E(K) = K0S
2/3K-5/3(KA)C (4.55) 

where KQ = 1.4 is the Kolmogorov constant, A a length scale and C, an 

intermittency factor. Under this assumption, the mean subgrid dissipation 

rate across a cutoff wave number KC, S(KC), scales like 

e(Kc)=e0K
y
c, 7 = — 2 — = 2^ ' (-4'56") 

where eo is a rec-independent parameter . It is observed tha t in the Kol­

mogorov case (a = —5/3), one obtains 7 = 0, leading to a constant dissi­

pation rate. 

Let us now introduce a set of cutoff wave numbers re„, with K\ > K2 > ••• 

and KP oc 1/A . The following recursive law is straightforwardly derived 

from (4.56) 

= Rln+l, Rn,n+1 = — (4.57) 
'7J+U n-n+1 

leading to the following two-level evaluation of the parameter 7: 
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l o g ^ M i ^ o ) , (458) 

log(-R„,n +i) 

Now introducing a generic subgrid model for the nth cutoff level 

TJ?=Cfij(uW,-£n)) (4.59) 

where C is the constant of the model to be dynamically computed, the 
dissipation rate can also be expressed as 

e{nn) = - r ^ = - C / ^ u W . t f " ^ . (4.60) 

Eq. (4.57) shows that the ratio e{Kn)/e{nn+\) is independent of the 
model constant C. Using this property, Terracol and Sagaut propose to 
introduce two test filter levels K2 and K3 (K\ being the grid filter level 
where the equations must be closed, i.e. A = A ). 

Fig. 4.10 Three-level spectral splitting considered for the dynamic procedure of Terracol 
and Sagaut (the scale separation operator is chosen here to be a sharp cutoff filter). 
Reliable estimations of the slope a and of the subgrid dissipation at the two cutoff 
wavenumbers K.2 and K3 is expected to provide the correct value of the subgrid dissipation 
E ( K I ) at the cutoff wavenumber rei. 
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The intermittency factor 7 is then computed using relation (4.58), and 

one obtains the following evaluation for the subgrid dissipation rate at the 

grid filter level: 

e («i ) = Rjt2e'{K2) (4.61) 

where £'(^2) is evaluated using a reliable approximation of the subgrid 

tensor to close the sequence (in practice, a scale-similarity model is used 

in [Terracol and Sagaut, 2003]). This procedure is described by Fig. 4.10. 

The corresponding value of C for the model at the grid level is then deduced 

from (4.60): 

C = Rh 1 ( - a ) -(1) • (4-62) 

The authors applied successfully their approach to homogeneous 

isotropic turbulence simulations (in the inviscid limit), using the s tandard 

form of the Smagorinsky closure for fy at the finest level. Their results ex­

hibited a flow behavior which was at least as good as the one obtained using 

the dynamic Smagorinsky model [Germano et al., 1991], or the Smagorinsky 

model using the optimal theoretical value of C. This is illustrated by Fig. 

4.11, which displays a comparison of the kinetic energy spectrum obtained 

in the self-similar regime using these three different approaches, on a 643 

computat ional grid. The approach was also applied by the authors to some 

plane channel flow simulations, considering moderate to significant values 

of the Reynolds number (skin friction Reynolds numbers from ReT = 180 

up to ReT = 2000 were considered). At the finest level, a scale-similarity 

model was retained by the authors. For the two respective cases corre­

sponding to ReT = 180 and ReT = 590, the results were compared to those 

obtained without any subgrid model, and with a dynamic Smagorinsky 

model [Germano et al., 1991], showing an improvement of both mean and 

turbulent profiles (see Fig. 4.12). For the higher Reynolds number cases, 

an asymptotic behavior of the near-wall velocity fluctuations was observed, 

as shown in Fig. 4.13. 

4 .3 .2 Shao procedure 

Another procedure was developed by Shao [Shao et al, 2003; Cui et al, 

2004] start ing from the Kolmogorov-Meneveau equation for filtered third-
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Fig. 4.11 Kinetic energy spectrum obtained in homogeneous isotropic turbulence simu­
lations, in the self-similar regime. Solid line: dynamic procedure of Terracol and Sagaut; 
dashed line: Smagorinsky model with C = 0.18, dash-dotted line: dynamic Smagorinsky 
model [Germano et al., 1991]. From [Terracol and Sagaut, 2003] with permission of 
American Institute of Physics. 

order velocity structure function: 

4 — 
--r£ = DLLL-6GLLL (4.63) 

where DLLL is the third-order longitudinal velocity correlation of the fil­
tered field 

^ L L L W = {[u(x + r) - u{x)f) (4.64) 

where (•} denotes the statistical average operator, GLLL(?") is the longitu­
dinal velocity-stress correlation tensor 

G L L L M = (UI(X)TII{X + r)) (4.65) 

and e = —TijSij is the average subgrid dissipation. 

j I i " 
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CaseB 

Fig. 4.12 Plane channel flow results (wall units are used) at ReT = 590 obtained using 
the dynamic procedure of Terracol and Sagaut (solid line), the dynamic Smagorinsky 
model (dashed line), and without subgrid modelling (dash-dotted line). Symbols cor­
respond to the DNS results of [Moser et al., 1999]. Left: mean streamwise velocity 
profiles; right: RMS velocity fluctuations profiles. From [Terracol and Sagaut, 2003] 
with permission of American Institute of Physics. 

Now assuming that the following self-similarity law is valid 

G L L L W O C ^ (4.66) 

where p = —1/3 corresponds to the Kolmogorov local isotropy hypotheses, 
one obtains the following relationship for two space increments ri and r2: 

0.8r-1e + r>LLL(ri) fn 

0.8r2e + DLhL(r2) \r2 

-1/3 
(4.67) 

Now introducing the same generic subgrid closure as for the Germano 
identity based subgrid models 

CfI3(u^,AW) , (4.68) 

and inserting it into (4.67) to compute e = —T>J S^ , taking n — A and 
r2 > r\, the new dynamic value of the constant C is 
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Fig. 4.13 Asymptotic behavior of the near-wall velocity fluctuations in plane channel 
flow simulations, observed using the dynamic procedure of Terracol and Sagaut (wall 
units are used). Dotted line: ReT — 180; dash-dotted line: ReT = 590; dashed line: 
ReT = 1050; solid line: ReT = 2000. From [Terracol and Sagaut, 2003] with permission 
of American Institute of Physics. 

(^y1/3DLLL(r2)-DLLL(A{1)) 

The only fixed parameter in the Shao procedure is the scaling parameter 
p in (4.66). This parameter can be computed dynamically introducing a 
third space increment r^, leading to the definition of a dynamic procedure 
with the same properties as the one proposed by Terracol and Sagaut. 
The proposal of Shao can also be extended to subgrid models with several 
adjustable constant by introducing an additional space increment for each 
new constant and solving a linear algebra problem. 

4.4 Variational Multiscale Methods and Related Subgrid 
Viscosity Models 

We now present subgrid models based on the Variational Multiscale method 
pioneered by Hughes [Hughes, 1995; Hughes and Stewart, 1996; Hughes 

J 1 I I M ll I I I I I 

(4.69) 
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et al., 1998; Hughes, Mazzei and Jansen, 2000] (see [Hughes, Scovazzi and 

Franca, 2004] for a survey). This method makes the functional fy in Eq. 

(4.3) sensitive to the smallest resolved scales, leading to the definition of 

models formally similar to Eq. (4.5). 

4 .4 .1 Hughes VMS approach and extended formulations 

The original formulation by Hughes deals with a general framework in 

computat ional mechanics (not restricted to fluid mechanics) based on 

a Galerkin-type representation of the physical unknowns [Hughes, 1995; 

Hughes and Stewart, 1996; Hughes et al., 1998; Hughes, Mazzei and Jansen, 

2000]. The first applications to the problem of turbulence were pub­

lished in 2001 [Hughes et al., 2001; Hughes, Oberai and Mazzei, 2001; 

Winckelmans and Jeanmar t , 2001]. The concepts developed within this 

finite-element framework are more general than the original presentation, 

and will therefore be presented here using the same multilevel framework 

as in the other chapters. A major difference with the original formulation 

is tha t equations will be writ ten here using the strong formulation of the 

Navier-Stokes equations, while the original developments were carried out 

using the weak formulation of the problem. The important point is tha t 

all equations given below are general ones, which do not explicitly depend 

upon the exact features of the scale separation operator used to split the 

resolved field. 

The key idea is to split the resolved field u^1' into two parts , namely 

the large resolved scales Tr2 ' and the small resolved scales (Ju'1 ' , leading 

the following decomposition of the total field 

u = u ( 2 ) + Su™ + u ' (4.70) 

u(D 

where, following the nomenclature introduced in Chap. 2, u ' is the subgrid, 

unresolved part . The associated evolution equation are 

V - u ( 2 ) = 0 (4.71) 

J^u<2> + V • (u<2> ® u<2>) = -Vp^ + i / V V 2 > - V • r<2> (4.72) 
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V • <ki(1) = 0 (4.73) 

at V ' 

= -VSpW + ^V2<ki« - V • (V1) - r<2>) . (4.74) 

Before detailing the Variational Multiscale method, it is worth decom­
posing the subgrid term which appears in the right hand side of Eq. (4.72) 
into its computable and non-computable parts: 

T ( 2 ) = O T 5 ( 2 ) - U ( 2 > ® U ( 2 ) 

(2) 

= (u<2> + Su^ + u ' ) ® (V2) + <5u(D + u ' ) - u{2) a TT(2) 

= (u^2) + SuW) ® (u(2) + <Ju(i)) 2 - u<2> ® u(2) 

l U v 

"(2) 7 — - ( 2 ) 

(4.75) 

(u<2> + SuW) ® u' + u' ® (u<2> + 5u(!)) 
N v -

r2 

Here, T\ represents the computable part of the subgrid tensor since it in­
volves only u^2) and ^u^1), which are known since the computed solution 
is uV'. This term accounts for the interaction between the large resolved 
scales and the small resolved scales. The two other terms, T^ and T3, cannot 
be computed because they involve the subgrid field vl and must therefore 
be modelled. 

Several methods inspired by Hughes works have been published [Winck-
elmans and Jeanmart, 2001; Jeanmart and Winckelmans, 2002; Vreman, 
2003], in which the localness in the wave number space is increased by 
using at least one of the two following ideas: 

(1) To use <SuW instead of u ^ in a classical subgrid model (or at least in 
some part of it). 

(2) To restrict the influence of the subgrid scales to the smallest resolved 
scales (i.e. on W 1 ) ) and to neglect it on the large scales (i.e. to 
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neglect T^ or T2 + T3 in Eq. (4.72)). This point was emphasized 
by Scott Collis [Scott Collis, 2001], who derived in the weak form the 
full equations, which are equivalent to the strong form of multilevel 
equations of Terracol et al. [Terracol et at, 2001; Terracol et al., 2003]. 

Let us illustrate these possibilities using the Smagorinsky model, which 
is the most popular subgrid viscosity model. The usual single scale expres­
sion for this model is 

r* = -2(CA) |S(u) |S(u) , S(u) = (Vu + V T u) (4.76) 

i/SgS(A,u) 

where T* = T — ̂ Id and ^sgs(A,u) are the deviatoric part of the sub-
grid tensor2 and the subgrid viscosity, respectively. The surrogate for the 
subgrid tensor appears as being composed of two parts: the subgrid viscos­
ity and the tensorial component. Each part can be localized in the wave 
number space, leading to four possible combinations: 

(1) Both parts are computed using Su1-1^, yielding the so-called Small-Small 
model: 

r* = -2 (CA ( 1 ) ) 2 | S (W 1 ) ) | S (W 1 ) ) (4.77) 

(2) The Large-Small model 

T* = -2(CA ( 1 ))2 jS(u(1)) |S(W1 )) (4.78) 

(3) The Small-Large model 

r* = -2(CA ( 1 ))2 |S(5uM)jS(uW) (4.79) 

(4) The Large-Large model, which is the usual single-scale Smagorinsky 
model 

r* = -2(CA (1 ))2 |S(u(1))jS(u(1)) (4.80) 

2 The deviatoric part is used here in place of the full tensor for consistency reason, 
since S(u) is traceless in incompressible flows. 
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The Small-Large model was not considered in the original work of 
Hughes, and its links with filtered subgrid models will be discussed later 
on. 

To get a deeper understanding in the way the Variational Multiscale 
method type models act on the resolved field, let us recall that in practice a 
sole equation for Tr1-* is solved: Eqs. (4.72) and (4.74) are not implemented 
and are presented for pedagogical purpose only. Let us rewrite the true 
governing equation as 

^ u « + V • (uW ® u « ) = - V p « + ^ V 2 u « 

_ V ^ - V - ( T W - T ^ ) (4.81) 
A " v ' 

B 

where the parts of the subgrid term acting on the largest resolved scales 
and the smallest resolved scales have been written separately. 

The variants of the Smagorinsky model presented above are more sensi­
tive to small scales than the original Smagorinsky model, but they a priori 
act on the whole resolved field u'1). This is obvious for the Small-Large 
model, which is proportional to S(u'1^). The case of the Small-Small model 
and the Large-Small model is more complex: these models will not act on 
the large scale field if S^1-*) and u'2-* are orthogonal. 

To enforce localness of the effect of the subgrid model, i.e. to make sure 
that it will act on the Su^ field only, a possible technique is to apply the 
test scale separation operator on it and to neglect the term A in the right 
hand side of Eq. (4.81). Recalling that 

u ( 2 ) = ^ ( u « ) , <5u« = (Id - T) ( u « ) (4.82) 

it is possible to identify both subgrid contribution as follows 

, W , / ( A ( 1 )
1 u ( 1 ) , W 1 ) ) (4.83) 

T(2) = T (T(D) + T ( n ( i ) ® u W ) - T ( u « ) ® T ( u W ) (4.84) 

where / is any model in the list given above. A localized subgrid model 
contribution is recovered taking 
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A = 0, B = V • (( /d - .F) ( / ( A ^ u W , < 5 U « ) ) 

- ( / (u^uOJ-f^J^fuO))) ) . (4'85) 

It is worth noting that another possible way to obtain a localized con­
tribution for B is directly suggested by Eq. (4.81). It consists in applying 
the same model at the two filtering levels, the total subgrid contribution 
being approximated as 

A = 0, ^ = V . ( / ( A ( 1 ) , u ( 1 ) ) - / ( A ( 2 ) , u ( 2 ) ) ) . (4.86) 

4.4.2 Implementation of the scale separation operator 

Equations given above are fully general, but the properties of the VMS 
methods are observed in practice to be very sensitive to details of the im­
plementation. 

A first solution consists in projecting all the unknowns on adequate 
functional subspaces spanned by a finite dimension basis, and to identify 
an orthogonal decomposition operator which will be defined as a projection 
operator. Defining the space of the fully resolved solution as Vi, one can 
write 

uW € Vi (4.87) 

and introducing the orthogonal decomposition 

Vi = V2 © Wi (4.88) 

with 

u (2 ) e V2, (5u(1) e Wi (4.89) 

one obtains a scale separation operator by operating the projection of all 
variables defined in Vi onto the two subspaces V2 and Wi- This projection 
has to be applied to the solution field Tr1-*, but also to the subgrid term if a 
localized subgrid contribution is sought. Such an approach is very appealing 
if the numerical method is based on a set of orthogonal basis functions, 
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like Fourier spectral methods or Galerkin method based on hierarchical 
bases. The projection step then simplifies as a simple truncation on the 
original basis which spans Vi. Let us illustrate this considering the following 
orthogonal modal decomposition of the resolved LES field: 

u«(z,t)=5 J2 ak(x,t)Mx,t) (4.90) 
k=l,N 

where the functions 4>k(x,t) are the basis functions and (ik(x,t) are the 
coefficients of the modal decomposition. The orthogonality property is 
expressed as 

<0i ,^- ) V l =O if i^j (4.91) 

where (<f>i,(j>j)v
 ls related to an arbitrarily chosen inner product in Vi. The 

model coefficients are defined as 

ak = u ^ ' (492) 

Assuming that each function fa can be associated to a characteristic 
length Afc and that the basis is ordered so that Ai > A2 > ... > XN, the 
scale separation is easily expressed as 

uW(x,t)= J2 ak(x,t)<f>k(x,t) , M<N (4.93) 
fe=l,M 

Su^{x,t)= J2 ak(x,t)Mx,t). (4.94) 
fc=M+l,JV 

Several authors use this approach: the Fourier basis and orthogo­
nal polynomial pseudo-spectral basis were used in [Hughes et at, 2001; 
Hughes, Oberai and Mazzei, 2001; Holmen et ai, 2004], and the Varia­
tional Multiscale Method was also implemented within the Discontinuous 
Galerkin method on unstructured grids using the hierarchical Dubiner basis 
in [Scott Collis, 2002; Munts, Hulshoff and de Borst, 2004]. 

Another solution is to define a discrete filter, which will be used to 
operate the auxiliary scale separation. This approach is very similar to the 
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usual implementation of dynamic models and can be interpreted as the 
implementation of a convolution filter. In this case, orthogonality of the 
separation is not a priori guaranteed, and is filter-dependent. This ap­
proach is very general, and can be easily implemented within all numerical 
frameworks. It is worth noting that the filtering approach can easily be 
recast using the modal decomposition introduced above as: 

uW{x,t)= J2 C>(x,t)ak(x,t)Mx,t) (4.95) 
fc=l,JV 

<5u«(x, i )= £ C<{x,t)ak(x,t)4>k{x,t) (4.96) 
fc=l,JV 

where C^ and C£ = (1 — C£) are the filter coefficients. The projection 
approach discussed above is recovered as a generalized sharp cutoff filter. A 
discrete filter approach was implemented in [Sagaut and Levasseur, 2005a] 
within a Fourier spectral method and in [Levasseur et al., 2005b] in a finite-
element method. 

A third solution, proposed by Koobus and Fahrat [Koobus and Farhat, 
2004] on unstructured grids in a Finite Element Volume method, is to use a 
multigrid-type restriction operator, which relies on a cell agglomeration step 
(see Fig. 4.14). Here, the large resolved scales W-2' are defined as the re­
striction of the fine solution Tr1' on a coarser mesh. The cell agglomeration 
can be interpreted as a special type of discrete filter. Its implementation is 
very easy in all codes already offering multigrid-type capabilities, since the 
restriction and prolongation operators of the original multigrid algorithms 
can be directly used. 

Whatever method is used to operate the scale separation between w-2' 
and (W1), the spectral features of the multiscale methods have been ob­
served to have a strong impact on the solution. It has been observed 
by several authors [Holmen et al., 2004; Hughes, Wells and Wray, 2004; 
Sagaut and Levasseur, 2005a] that both the value of the cutoff wave num­
ber associated to the scale separation operator and the transfer function 
(in the Fourier space) of this operator are important parameter. In the 
case where the scale separation operator induces a sharp decomposition in 
the Fourier space and the effect of the subgrid model is strictly restricted 
to 6u^\ long range triadic interactions are totally neglected and spuii-
ous kinetic energy pile-up may occur in the u^2^. The spectral transfer;-; 
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Primal cell Dual cell 
agglomeration agglomeration 

Fig. 4.14 Cell agglomeration in a two-dimensional unstructured grid. Two strategies 
exist: agglomeration of the primal cells or of the dual cells. Primal cells are the white 
triangles, while the shaded areas represent the agglomerated cells. 

associated with each component of the subgrid tensor are illustrated in 
Fig. 4.15. 

This can be explained by the fact that distant energy transfers represent 
up to 25% of the full kinetic energy transfers, according to the theoretical 
analysis of Kraichnan. These transfers are responsible for the existence of 
a plateau in the spectral eddy viscosity for low wave numbers predicted by 
theoretical analysis and observed in direct numerical simulations. Recent 
analyses prove that long range energy transfer are mainly due to subgrid 
Reynolds stresses (T3 in Eq. (4.75) ) while short range transfers are mainly 
driven by cross terms (T2 in Eq. (4.75) ). This spurious energy pile-up can 
be prevented by using a scale separation with a smooth transfer function 
in the Fourier space, which will allow for the existence of a spectral overlap 
between Tr ' and (JIT1). This spectral overlap makes the subgrid model 
acting also on the low wave numbers, even if the model is strictly restricted 
to 5u^\ Examples based on the use of the Gaussian filter in a Fourier 
decomposition of the turbulent field are given in [Sagaut and Levasseur, 
2005a]. It is important to note that similar conclusions dealing with the 
necessity of accounting for long range transfers in the equation for Tr2-* were 
drawn by Terracol, Sagaut and Basdevant [Terracol et al., 2001] within the 
framework of Multilevel Large-eddy simulation methods (see Sec. 5.4.2). 
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Fig. 4.15 Spectral transfers associated with the basic Variational Multiscale method. 
Scale separations operators are assumed here to be sharp cutoff. 

4.4.3 Bridging with hyperviscosity and filtered models 

Variational Multiscale method based variants of the Smagorinsky model 
can also be reinterpreted within other existing frameworks. In the case 
where the scale separation operator can be interpreted as a differen­
tial operator, some multiscale models are observed to be very similar 
with hyperviscosity subgrid closures [Winckelmans and Jeanmart, 2001; 
Jeanmart and Winckelmans, 2002; Sagaut and Levasseur, 2005a]. 

This is in particular true in the case where the scale separation opera­
tor can be assimilated to a convolution filter with a symmetric kernel G. 
Writing 

u^(x) /*G(a;-0u (1) mi (4.97) 

and assuming that the resolved field is smooth enough to make the following 
Taylor series expansion relevant 

*(1)(o= £ (-1)"^^1)w 
p=0,oo 

(4.98) 
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the small scale field is approximated as 

p=l,oo 

where MP(G) denotes the pth-order moment of the filter kernel G. For he 
/ ( I ) \ P 

Gaussian and the top-hat filter, one has MP(G) oc (A J . Retaining only 
the leading order term, one obtains 

Su(1\x) = aG ( A ( 1 ) ) P V2U^(X) (4.100) 

where aG is a filter-dependent parameter. Inserting this simplified expres­
sion into previous definitions of the multiscale variants of the Smagorinsky 
models discussed above, one obtain the following higher-order differential 
surrogates: 

• For the Small-Small model 

T* = 2\aG\aGC2 ( A ( 1 ) ) 6 | S ( V 2 U ( 1 ) ) | S ( V U « ) (4.101) 

• For the Large-Small model 

T* = 2aGC2 ( A ( 1 ) ) 4 | S ( U « ) | S ( V 2 U « ) (4.102) 

• For the Small-Large model 

T* ~ -2\aG\C2 ( A W ) 4 | S ( V 2 U W ) | S ( U « ) (4.103) 

The increased localness in terms of wave number of the Small-Small 
model and the Large-Small model is associated to the fact that the dis-
sipative operator is now associated to an iterated Laplacian operator as 
in hyperviscosity models. The Small-Large model is associated to an usual 
Laplacian operator, but the subgrid viscosity is now computed using V2uW 
as an input, exactly as in filtered subgrid models proposed by Ducros et al. 
[Ducros, Comte and Lesieur, 1996] and extended by Sagaut and coworkers 
[Sagaut, Comte and Ducros, 2000]. 



Chapter 5 

Structural Multiscale Subgrid 
Models: Small Scales Estimations 

This chapter presents the multilevel approaches which rely on an estimation 

of some small scales of the flow in order to obtain improved subgrid closures 

and /o r representation of the flow. From the pure modelling point of view 

the knowledge of some scales smaller than the resolved ones at any filtering 

level allows for the derivation of some structural subgrid models, which 

may be much more representative of the real interactions of the resolved 

and unresolved scales t han models based only on resolved scales. As will 

be detailed, there exist different possible ways which make it possible to 

generate some small scales. 

The first one relies on an approximate deconvolution of the filtered field, 

which aims at inverting the filtering operation. Such approaches, referred 

to as the deconvolution methods are based on the explicit introduction of 

two different filtering levels, by mean of some explicit discrete filters. These 

approaches will be described in Sec. 5.1. 

A second possible approach is based on a multifractal reconstruction of 

the subgrid vorticity field. This approach will be presented in Sec. 5.2. 

The third approach relies on an explicit resolution of the small scales, 

coupled with the use of a sequence of computational grids with different 

spatial resolution. Such a resolution of the small scales is then made pos­

sible by minimizing the effort devoted to their computat ion either in t ime 

by using a multigrid cycling approach, or in space by the use of a zonal 

multigrid or multidomain approach. These approaches, based on a multi-

grid hierarchy will be fully described in Sees. 5.3, 5.4, and 5.5. 

125 
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5.1 Smal l - sca le R e c o n s t r u c t i o n M e t h o d s : D e c o n v o l u t i o n 

The general idea of these methods is to perform a structural modelling of 

the subgrid terms by getting an approximation of the unresolved missing 

scales. In practice, it is then necessary to reconstruct a velocity field with a 

higher wavenumber content than the resolved field. For this reason, these 

methods are generally referred to as deconvolution approaches since they 

aim at inverting the filtering operation formally obtained by a convolution 

product. 

By denoting u = G * u the resolved field, the first common step in de-

convolution approaches is to reconstruct an approximate de-filtered velocity 

field, which will be used to compute explicitly the subgrid terms: 

u * ^ G _ 1 * u . (5.1) 

The following simple model can then be retained for the subgrid-stress 

tensor r : 

T = U ® U - U ( g ) U ~ U * ® U * - U * < g ) U * . (5.2) 

The problem is then how to define the approximate de-filtered velocity field, 

or equivalently how to approximate the inverse of the filtering operator1 . 

Indeed, it has to be recalled here tha t in most cases the exact filtering 

operator remains unknown, and also tha t an additional difficulty relies on 

the fact tha t the grid used for the simulations correspond to a finite support 

in both physical and spectral spaces, so tha t a limited range of wavenumbers 

can be represented. For these two reasons, it remains impossible to compute 

exactly the de-filtered velocity field. 

Several approaches can be found in the literature to reconstruct an 

approximate de-filtered field. A common point between these approaches 

is tha t they all introduce two levels of filtering of the solution. 

According to the notations introduced in Chap. 2, the resolved field will 

be the one at the coarser level: u = u^2\ while the finest level will only 

be used to compute the approximate de-filtered field: u* = u ^ , which in 

xIt can be remarked that one of the first and most famous structural model, as 
proposed by Bardina et al. [Bardina et al, 1980] can be interpreted as a simplification 
of relations (5.1) and (5.2), where the two filtering levels are the same, i.e. G^1 = Id, 
therefore leading to the following well-known possible closure for r : 

T ~ U (g> U — U ® U. 
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return will provide an expression2 for T^ as: 

Tf(2) (5.3) 

where it is recalled tha t u^2 ' = 6 2 ( u ) = G^ * G\ * u and u '1^ = G\ * u . 

This two-level decomposition of the velocity field is illustrated by Fig. 5.1 

in the spectral space. 

Fig. 5.1 Two-level spectral splitting used for the deconvolution approaches. 

The idea of deconvolution is not so new. Indeed, the early works of 

Leonard [Leonard, 1974] and Clark et al. [Clark et al., 1979] already intro­

duced this concept. More recently, Shah and Ferziger [Shah and Ferziger, 

1995], proposed a s tructural model based on an approximate inversion of 

the filtering operator. However, in all these approaches, the filtered and 

the de-filtered field are bo th represented on the same computat ional grid, 

so tha t they are in practice associated to the same spectral content. In 

tha t context, the deconvolution step alone therefore does not make it pos­

sible to really introduce finer scales in the deconvolved field. Despite a high 

practical correlation between the modelled and real subgrid terms, this gen-

2I t is to be remarked here that considering expression (5.3) for T^2' is equivalent to 
neglect all the interactions associated to wavenumbers larger than M . This means that 
the energy transfers have to be local in the wavenumbers space. This is also equivalent 
to neglect the term G*2 * r ( 1 ' in the relation of Germano written for r ' 2 ' . 
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erally results in a global under-dissipative behavior of the resulting subgrid 

model since some interactions between large and small scales are still not 

accounted for. 

In some more recent works, this point has received much attention, 

and two main methods have been particularly developed, which propose 

to explicitly introduce smaller scales in the deconvolved field. This can be 

done practically in two ways. The first one, as proposed by Domaradzki and 

his coworkers when developing the velocity estimation model [Domaradzki 

and Saiki, 1997; Domaradzki and Loh, 1999; Loh and Domaradzki, 1999; 

Domaradzki and Yee, 2000] is to introduce an additional finer grid in the 

simulation to represent the deconvolved field. This method will be detailed 

in Sec. 5.1.1. The second possible technique, as introduced by Adams and 

coworkers [Adams and Leonard, 1999; Adams, 1999; Adams, 2000b; Stolz 

and Adams, 1999; Stolz et al., 2001a; Stolz et al., 2001b] relies on the 

explicit introduction of the filtering operator in the simulation to define 

the filtered field3. In tha t case, the grid is therefore able to represent some 

smaller scales than those represented by the filtered field. The explicit 

knowledge of the filter also makes it possible to compute the approximate 

deconvolved field by its repeated application. The so-called Approximate 

Deconvolution Model (ADM) will be exhaustively detailed in Sec. 5.1.2. 

5.1.1 The velocity estimation model 

Domaradzki and his co-workers [Domaradzki and Loh, 1999; Loh and Do­

maradzki, 1999] propose an evaluation of the approximate de-filtered field 

u*- ' in two successive steps: in the first step, referred to as the decon­

volution step, the filtering operator G2 is inverted, on the grid used for 

the simulation, and corresponding to the representation u ^2' of the veloc­

ity field, which will be considered as the "coarse" grid. Then, this field 

is interpolated on a twice finer grid where some smaller scales are gener­

ated during the second step referred to as the non-linear step. These two 

steps are also respectively referred to as the kinematic and dynamic steps 

by the authors. The different versions of the resulting Velocity Estimation 

Model are corresponding to several modifications and improvements of the 

original version developed in the spectral space by Domaradzki and Saiki 

[Domaradzki and Saiki, 1997] for incompressible flows. The two successive 

3At this point, it may be recalled that the filtering operator is generally omitted in 
LES, and only considered as resulting implicitly from the discretization grid and the 
numerical scheme. 
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steps can be summarized as follows: 

(1) D e c o n v o l u t i o n s t e p 

This step consists in computing an intermediate velocity field ud such 

tha t G2 *ud = u(2\ For this, the filter G% is assumed to be a box or 

Gaussian filter with a cutoff lengthscale A(2) = 2Ax where Aa; denotes 

the space step. The Simpson's rule gives a second-order finite-difference 

approximation of such a filter (in one space dimension) as: 

u ' 3 ) = G 2 * ud{x) = i (ud{x - Aa;) + Aud{x) + ud(x + Ax)) . (5.4) 

This expression results in a tri-diagonal system of equations for the 

values ud(x). These values may then be considered as an approximate 

de-filtered field for which the filtering operation has been inverted. 

However, at this point, this deconvolved field is still represented on 

the LES mesh, and thus does not introduce any scales smaller than 

those already resolved. Indeed, the exact deconvolution should only 

be possible if the two fields u ^ and u ( 1^ had the same spectral sup­

port , even if the exact filter was known. This is obviously not the case 

with discretization procedures, since grid sampling removes some high 

wavenumber modes to the continuous field, which are irremediably lost 

and cannot be recovered. For this reason, the "deconvolved" field ud 

is unable to provide the exact subgrid stresses, and leads generally to 

an under-dissipative subgrid model. To get around this problem, Do-

maradzki et al. have introduced a second step in their method, which 

is to generate some smaller scales on a finer grid, by non-linear inter­

actions. This step is referred to as the non-linear or dynamic step. 

(2) N o n - l i n e a r s t e p 
This second step of the estimation procedure, as mentioned above, aims 

at generating explicitly some scales twice smaller than the smallest grid-

resolved scales by means of non-linear interactions. For this purpose, 

the deconvolved field obtained in the first step is first interpolated4 on a 

twice finer computational grid, such tha t some finer missing scales can 

be represented. Such scales are however still not present and require an 

additional procedure to be generated. The original procedure proposed 

by the authors relies on the direct use of the non-linear term from 

4The authors used cubic splines for this interpolation. 
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the filtered Navier-Stokes equations for ud: —wf ——uf. This term 
3 dxj 

is a production term for all the resolved scales on the fine auxiliary 

grid, and is therefore not exclusively linked to the production of small 

scales. For this reason, the large-scale effects have to be discarded. The 

first one is the advection by the large scales, which can be removed by 

subtracting the large scale component in the advective velocity, leading 

to the following intermediate expression for the non-linear term: 

d 
Nt = -{uj-G2^)—ut (5.5) 

In order to restrict the effects of this term to the smallest scales only, 

its filtered contribution is also removed, leading to the following final 

expression for the small-scales production term: 

N[ = N* - G2 * N* = - {Id -G2)*[ (u? - G2 * uj) .—uf . (5.6) iJ~G2^uJ).~-

In order to use this non-linear term to generate explicitly the small 

scales, an estimation of the production time 6 during which it has to 

be applied has to be derived. The authors highlight the fact tha t this 

t ime can be interpreted physically as the large eddy turnover time. For 

this purpose, the authors use the assumption tha t the kinetic energy of 

the small scales generated by N[ during the t ime 6 should be equal to 

a fraction R2 of the one from the smallest resolved scales: 

This expression finally gives: 

9 = R 

\ 

uf 
2 

Wf 
(5, 

The ratio parameter R is dependent on the filter, and can be evaluated 

for some particular filter shapes (under the assumption of an inertial 

range), leading to an average value of R = 0.5. The resulting expression 

for the final deconvolved velocity field on the fine grid is the following: 

= ~d + ~, (5-9) 
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where u ' is the velocity field associated to the small scales produced by 

the non-linear step. This expression of u W is finally used to compute 

the subgrid stress tensor on the coarse grid level. 

This approach has been applied by the authors in some plane channel 

flow computations. For these simulations, some values of the skin-friction 

Reynolds number of ReT = 180 and ReT = 1050 were considered. The com­

plete (two-step) estimation procedure was shown to yield to some results 

which compare well with DNS and experimental ones, and also to provide 

reliable estimations of the energy budget. The authors also investigated a 

simplified version of the procedure, by neglecting the second (non-linear) 

step. In this case, the simulations exhibited an under-dissipative behavior, 

therefore showing tha t pure deconvolution on the same grid as the compu­

tat ional grid does not allow the recovering of a reliable estimation of the 

unfiltered velocity field. 

As an example, their results for the highest considered value of the 

Reynolds number are reported here. The results obtained using the full 

estimation procedure (deconvolution + non-linear step) are compared to 

those from some simulations using only the deconvolution step, or no sub-

grid model at all. For these simulations, some rather coarse meshes were 

considered (48 x 64 x 65 points in the respective streamwise, spanwise, and 

wall-normal directions). The results were also compared with the reference 

LES performed by Piomelli [Piomelli, 1993] in a similar configuration, as 

well as to the experimental results of Wei and Wil lmarth [Wei and Will-

marth , 1989]. Figure 5.2 displays the mean streamwise velocity profiles 

obtained in this case. It can be observed tha t the LES using only the de-

convolution step without the non-linear step leads to some results which 

are very similar to the ones obtained without any subgrid model, therefore 

revealing an under-dissipative behavior. However, the use of the full estima­

tion procedure leads to some results in good agreement with the reference 

ones. Figure 5.3 displays the velocity fluctuations profiles obtained with the 

full estimation procedure. Here, it is observed tha t the location of the peak 

of the streamwise velocity fluctuation is well located, but overestimated by 

about 20%. 

In a later study, Domaradzki and Yee [Domaradzki and Yee, 2000] pro­

posed a modified version of the dynamic step, in order to get a bet ter 

correlation between the large and the (new) small scales of the flow. In 

this case, the estimated velocity field u^1' is no longer used to compute the 

subgrid-stress tensor on the coarse grid, but to perform time advancement 
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Fig. 5.2 Mean streamwise velocity profiles in the high-Reynolds channel flow configu­
ration (ReT = 1050). Symbols: experiment from Wei and Willmarth, 1989; solid line: 
LES from Piomelli, 1993; dash-dotted line: LES with the subgrid-scale estimation model; 
dashed line: pure deconvolution; dotted line: no-model LES. From [Domaradzki and Loh 
(1999)], with permission of American Institute of Physics. 

on the fine grid level. The effects of the small scales on the large ones is 
then represented through the real Navier-Stokes dynamics on the fine grid 
instead of the approximated subgrid stress model on the coarse one. The 
modified non-linear step is organized as follows: 

• The first step relies on the calculation of the approximate deconvolved 
field u^1) on the fine grid, as given by formula (5.9), at the time t. 

• The corresponding fine-grid flow variables are then advanced in time 
according to the Navier-Stokes dynamics on the fine grid level during 
an integration time of T: 

r( i ) (t + T) NST{uw(t)) (5.10) 

where NST denotes symbolically the resolution of the Navier-Stokes 

equations during an integration time T. According to the authors, 
the time T must be chosen short enough to ensure that no unphysical 
equipartition of energy at large scales can occur during this time. In­
deed, the (direct) Navier-Stokes equations are solved on the fine grid 
without any subgrid model, and thus may lead to erroneous scales in­
teractions at high Reynolds numbers since the grid is not fine enough. 
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Fig. 5.3 RMS fluctuations of velocity in the high-Reynolds channel flow configuration 
(Re-r = 1050). Symbols: experiment from Wei and Wilhnarth, 1989; solid line: LES with 
the subgrid-scale estimation model. From [Domaradzki and Loh (1999)], with permission 
of American Institute of Physics. 

The authors found values of T between 1% and 3% of the large eddy 

turnover t ime to be adapted to their isotropic turbulence computations. 

• The fine-grid velocity field obtained at the time t + T is then finally 

transferred back to the coarse grid level during the reduction step, as: 

u ( 2 ) ( t + T) = G 2 * ( J i ^ 2 ( u ( 1 ) ( t + T) - u ' ( t ) ) ) (5.11) 

where I\^2 denotes an interpolation operator from the fine to the 

coarse grid. It is to be noted tha t the original per turbat ion velocity 

u'(£) is first subtracted from the Navier-Stokes solution on the fine 

grid before filtering and sampling on the coarse grid. This is done to 

ensure tha t the modifications of the (coarse grid) filtered field u*-2' 

are only due to the Navier-Stokes dynamics, and to eliminate spurious 

effects due to the combination of the estimation and reduction steps. 

This modified approach was applied by the authors to the simulation of 

high-Reynolds homogeneous isotropic turbulence, in which both the K ,~ 5 / 3 

spectrum and Kolmogorov constant value were well recovered. 

While time integration on a twice finer mesh involves much more CPU 

requirements than integration on the coarse grid only (eight times more 

points in three dimensions, and two times smaller t ime steps to ensure the 

0 u',m Wei &Willmarth( 1989) 
u' EP2 

o w'^ Wei&Willmarth(1989) 
W' EP2 
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validity of the CFL condition), this approach presents some advantages. 

Indeed, the effects of the small scales on the large-resolved ones is directly 

represented by the Navier-Stokes dynamics. As a consequence, since no 

particular form of the subgrid terms is considered, the backscatter effects 

are taken into account, and the closure appears (at least theoretically) able 

to account for some specific physical flow phenomena (compressible flows5, 

reactive flows), as well as numerical and commutation errors. 

5.1 .2 The Approximate Deconvolution Model (ADM) 

Stolz, Adams and Kleiser [Stolz et al., 2001a], following the ideas introduced 

by Geurts [Geurts, 1997], propose a small scales reconstruction method, in 

which the introduction of an additional fine computational grid is avoided 

by introducing explicitly the filtering operator in the simulation. In their 

approach, the cutoff lengthscale A of the filtering operator is therefore 

explicitly imposed, and chosen to be larger than the mesh size Ax. As a 

consequence, the corresponding cutoff wavenumber KC is smaller than the 

grid (Nyquist) cutoff wavenumber KJV = IT/Ax. This therefore allows the 

representation of some smaller scales than the resolved ones on the same 

the computational grid, without introducing an additional grid as in the 

velocity estimation approach. 

The authors propose to define the simulation filter Gi by using some 

Pade approximants [Lele, 1994], and recommend a cutoff wavenumber value 

of KC = 2/3KN- The inverse G^ of this filter is approximated by a trunca­

tion at N of its series expansion as: 

N 

G^1 ~QN = J2(Id~G2)1 • (5-12) 
1=0 

The authors indicate tha t a sufficient accuracy is reached for N — 5. The 

approximate deconvolved velocity field u^1' can therefore be obtained by 

repeated filtering of u^ as: 

TV 

u « ~ ] T ( / d - G 2 ) ' * u ( 2 > . (5.13) 
1=0 

The subgrid-stress tensor is then directly computed from this approximate 

deconvolved field. 

• The extension of the velocity estimation model to the case of compressible turbulence 
has been carried out by Dubois et al. [Dubois et al, 2002] . 
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However, this procedure does not allow a description of the interactions 
between the resolved scales and the scales associated to wavenumber val­
ues larger than the Nyquist cutoff wavenumber (K > KN), i.e. the scales 
smaller than the mesh size. For that reason, the authors have found neces­
sary to introduce a regularization step6 in their method, which is based on 
the introduction of an additional term in the filtered continuity equation. 
This relaxation term TZ aims at removing explicitly some energy from the 
wavenumber band KC < K < KN- Its expression is given by: 

n = -X(Id-QNG2)*u{2) (5.14) 

The filtered continuity equation for the resolved field u ^ finally reads as 
follows: 

| u ( 2 > + V. (G2 * ( u « ® u W ) ) = -Vp(2> + ^V2u(2) 

-X{Id-QNG2)*u^ 

where the deconvolved field u ^ is approximated by relation (5.13). 
The operator (Id — QNG2) is positive semidefinite, therefore leading to 
a purely dissipative effect of the relaxation term H. It is to be noted 
that the relaxation parameter x c a n be interpreted as the inverse of a 
relaxation time. The use of this relaxation term can therefore be seen as 
the application of a secondary filter on the solution every 1/ (xAi) time 
step (where At denotes the time step), which acts only on the unresolved 
but represented wavenumbers in the range KC < K < K,N-

According to the authors, the simulations do not in practice exhibit a 
strong dependency to the value of X- In their works dealing with the exten­
sion of the method to the case of compressible flows [Stolz et al, 2001b], 
the authors derived a dynamic procedure to evaluate this parameter. The 
value of x ls then adjusted dynamically in both space and time such that 
the small scale kinetic energy (associated to the highest resolved wavenum­
bers KC < K < KN) remains constant during time advancement. For that 
purpose, the authors make use of the structure function7 Fs: 

6 It should be noted that in some recent works dealing with the application of the ADM 
to the simulation of transitional boundary layers [Schlatter et al., 2004], the authors 
finally only consider this regularization term to represent the interactions with subgrid 
scales. The resulting approach is referred to as ADM-RT (ADM-Relaxation Term). 

The authors use in practice the discrete local second-order form of the structure 
function, involving in three dimensions and on a structured mesh the sixth neighboring 
points of the considered point. 
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F8 (x, t) = ||$(x + r, t) - *(x, t)\\lr[l=Ax (5.16) 

where $ = (Id - QNG2) * u ^ in the incompressible framework. Two 
estimations8 are then necessary to get a local estimation of the relaxation 
parameter x-

• First, an estimate of the energy generated during one time step At in 
the range KC < K < KN without any regularization is computed, by 
solving eq. 5.15 with X = 0- This quantity is given by: 

Akx=0 = Fs(-K,t + M)\x=0- F f l(x,t) (5.17) 

• Secondly, the energy that would be dissipated by using an arbitrary9 

value xo of the regularization parameter x is given by: 

Akx=Xo = F a ( x , i + A i ) | x = 0 - Fa(x,t)\x=Xo. (5.18) 

Given these two estimates, a simple rule is then used to get the proper 
local10 value of the relaxation parameter: 

X = X o ^ . (5.19) 

According to the authors, the time variations of this parameter are quite 
small, such that its evaluation can be carried out only every 5-10 iterations. 

The authors performed some extensive validations of this approach, in 
both the incompressible and compressible (the compressible formulation of 
the method is detailed in [Stolz et al., 2001b]) regimes. It was assessed 
in academic cases such as isotropic decaying turbulence and plane channel 
flows, where some accurate results were obtained even with the use of quite 
coarse grids. 

In [Stolz et al., 2001b], the authors present an application of their 
technique to the simulation of a supersonic compression ramp flow where 
shock-turbulence interaction occurs. The flow configuration can be seen in 
Fig. 5.4: the boundary layer along a compression rarnp with a deflection 

8For that purpose, the authors use a simple backward Euler scheme. 
9 The more obvious value for xo is the estimated value of \ at the previous time step. 

10For stability reasons, the authors introduce an additional spatial smoothing of x, 
together with a maximum threshold value. 
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angle of 18° is considered, at a flow Mach number of M = 3. The associ­
ated Reynolds number (based on the free-stream quantities and the inflow 
boundary layer mean momentum thickness) is Reg = 1685. A LES using 
the approximate deconvolution model has been performed on a 334 x 31 x 91 
grid (which has to be compared to the one used to perform a DNS on the 
same configuration with 1001 x 81 x 181 grid points [Adams, 2000a]). The 
authors report a reduction of the computational effort for the LES by a 
factor of 30 in comparison with the DNS. 

The numerical Schlieren views reported in Fig. 5.4 show that the in­
stantaneous large-scale behavior provided by the LES is very similar to the 
one provided by the DNS. 

Figure 5.5 compares the mean profiles of the primitive flow variables11 

obtained by LES to those obtained by DNS, at ten different downstream 
stations. The first station is located in the oncoming boundary layer, the 
last one downstream of the corner, in the reattached boundary layer, while 
the eight other stations are located in the vicinity of the corner. An overall 
good agreement is observed between the LES and filtered DNS results, 
for all variables. It can be checked that the position of the shock is well 
reproduced by the LES. A similar agreement is obtained on the turbulent 
fluctuations (see Fig. 5.6). 

11 The velocity components are replaced by the velocity components expressed in a 
local cartesian system aligned with the walls (contravariant velocity). 
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X3 

Xz 

X3 

Fig. 5.4 Numerical Schlieren view of the flow (j| Vp|| contours) in the compression ramp 
configuration; (a) spanwise and time average from LES; (b) instantaneous spanwise 
average from LES; (c) instantaneous spanwise average from DNS. The approximate de-
convolution model is used for the LES. From [Stolz et al. (2001)], with permission of 
American Institute of Physics. 
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Fig. 5.5 Mean profiles of (a) streamwise contravariant velocity, (b) temperature, (c) 
pressure, and (d) density, at different downstream stations, in the compression ramp 
configuration. Solid line: filtered DNS; dotted line: LES with the approximate decon-
volution model. From [Stolz et al. (2001)], with permission of American Institute of 
Physics. 
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Fig. 5.6 RMS fluctuation profiles of (a) streamwise contravariant momentum, (b) den­
sity, (c) streamwise velocity, and (d) temperature, at different downstream stations, in 
the compression ramp configuration. Solid line: filtered DNS; dotted line: LES with 
the approximate deconvolution model. From [Stolz et al. (2001)], with permission of 
American Institute of Physics. 
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5.2 Small Scales Reconstruction: Multifractal 
Subgrid-scale Modelling 

5.2.1 General idea of the method 

Following the same idea of deriving a structural subgrid model, Burton 
and Dahm [Burton and Dahm, 2005a; Burton and Dahm, 2005b] propose to 
perform an explicit evaluation of the subgrid velocity by using a multifractal 
representation of the subgrid vorticity field12. 

First, the following decomposition of the velocity field is considered 

= T T ( I ) (5.20) 

where the resolution level 1 corresponds to the grid filtering level, with a 
cutoff lengthscale of A . The subgrid stress tensor is then decomposed 
thanks to Leonard's decomposition as: 

T(D = u W 1 } - uW ® u « 
= T + T 

where TR is a fully resolved quantity: 

TR= u M ^ u W ^ - u - W ^ u - W (5.22) 

and the unresolved part r* is the sum of the cross- and Reynolds terms: 

T*=U{1)®U' + u'<g>u(1) + u ' ® u ' ( 1 ) . (5.23) 

This tensor appears as the only term that requires modelling. In this aim, 
the authors propose to perform a reconstruction of the subgrid velocity fluc­
tuations u', by first performing a reconstruction of the associated subgrid 
vorticity field w' = V x u'. 

From the knowledge of the subgrid vorticity field u/, the subgrid velocity 
can then be recovered thanks to Biot-Savart integral: 

1 f ,,r .S X ^ u'(x, t) = — u'& t) x ^df- (5.24) 

12Notice that a fractal reconstruction procedure was proposed by Scotti and Mene-
veau [Scotti and Meneveau, 1999], who performed a direct reconstruction of the subgrid 
velocity fluctuations. Using the fractality of the velocity field, these authors developed a 
fractal interpolation technique to compute the velocity fluctuations by interpolation of 
a resolved coarse-grid velocity field on a,finer grid. 
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Since this expression of the subgrid velocity is an integral value, it is then 
expected to be less sensitive to modelling errors on LO' than if it was based 
on a direct reconstruction of u'. 

5.2.2 Multifractal reconstruction of subgrid vorticity 

Multifractal fields result from the repeated application of a scale-invariant 
multiplicative process to an initial field. In turbulent flows, gradient-
magnitude fields such as enstrophy, kinetic energy dissipation rate, or scalar 
energy dissipation exhibit such a multifractal scale-similarity. 

On this basis, a multifractal reconstruction of the vorticity field is pro­
posed in [Burton and Dahm, 2005a], starting from the grid scale A ^ , down 
to the viscous length r/. The procedure consists in two separate cascades 
which distribute the subgrid vorticity magnitude |u/| and orientation vec­
tors e^i to each of the subscales between rj and A'1). These two cascades 
are described below. 

5.2.2.f Vorticity magnitude cascade 

The first step of the reconstruction is to get an estimation of the subgrid 
vorticity magnitude \u>'\. To do so, a secondary filtering level is first in­
troduced explicitly thanks to the use of a secondary filtering operator G2, 
characterized13 by its cutoff length A^2) = rA^\ with r > 1. 

The idea is then to estimate the subgrid enstrophy fi' as a function of 
the enstrophy at the smallest resolved scales tts, as detailed below. 

The global vorticity can be expressed using the following triple decom­
position: 

u = V x u = w(2) + u / W (5.25) 

where: 

w(2) = V x u<2> (5.26) 

J = V x <5uW (5.27) 

J = V x u'. (5.28) 

13 For the following developments, it will be assumed that the filter G2 is a sharp cutoff 
filter, and thus that its cutoff length and the one of the combined filter Gi * G\ are the 
same i.e: A = A ' 2 ' . 
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We recall (see Chapter 2) that u ^ = G2 * u ' 1 ' and Su™ = u « - u<2>. 
For each of the three range of scales introduced in decomposition (5.25), 
the associated enstrophies are introduced: 

Ul • UJ . 

(5.29) 

(5.30) 

(5.31) 

n = n ^ + ns + n' + 2(uj'- u^ + to' • tos + uW 

The following expression is then derived for the average enstrophy Q = ui-ui: 

) . (5.32) 

Neglecting averages over the cross terms14, we get: 

fi ~ ft(2) + n6 + Of. (5.33) 

The spectrum £2(/c) associated to the total enstrophy field is therefore the 
sum of the three respective spectra Q,(2>(K), QS(K), and fi'(/c), and the 
enstrophies associated to the intermediate and subgrid fields, fls, and Q' 
can be approximated as: 

nd 

jy = 

il(fi)dK 

Q.(K)CIK 

(5.34) 

(5.35) 

where KI, K2 and KV are the wavenumbers associated to A*-1', A") and r) 
(dissipation scale) respectively. Figure 5.7 displays schematically these two 
last quantities. 

On dimensional grounds the enstrophy is shown to scale as Q(K) OC K 1 / 3 

in the inertial range, leading finally to the following estimation of fl' as a 
function of fls: 

Q' = ASIS 

Ki 

4/3 

(5.36) 

where A ( l ~ r - 4 / 3 ) " 

14According to the authors, widely disparate scale ranges in the vorticity field display 
a low correlation factor. 
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Fig. 5.7 Approximate multiscale decomposition of the enstrophy spectrum considered 
for the multifractal reconstruction of subgrid vorticity. 

The subgrid enstrophy is then distributed over each grid scale cell by a 
three-dimensional stochastic multiplicative cascade, leading to the following 
expression for the subgrid vorticity magnitude into each inner-scale cell: 

/ TV X 1 / 2 

\u>'\ (x, t) = I SI' (27V)3 f l Mn (x, t) (5.37) 

where N = log2(A^1'> /rj) represents the number of cascade steps, and the 
multipliers M.n determine randomly the division between the scales (0 < 
M.n < 1), satisfying a scale-invariant distribution V(A4) for the enstrophy 
field. 

5.2.2.2 Vorticity orientation cascade 

The orientations in the subgrid vorticity field co' at each level of the multi-
fractal cascade are computed so that they decorrelate at successively smaller 
scales from the local orientations e<5(x, t) (the orientation is defined by a 
unit vector) of the vorticity at the smallest resolved scales, us. 

At each scale n of the cascade (5.37), the unit orientation vector is 
computed as: 

e«+i = e " + f (5.38) 



Structural Multiscale Subgrid Models: Small Scales Estimations 145 

where the decorrelation increment f™ at step n is defined by two stochastic 
spherical decorrelation angles </> and 0 (see Fig. 5.8): 

fa = sin (f> cos i 
fp — sin (j> sin 6 

/ 7 = cos <j> — 1 

(5.39) 

In the present multifractal model, the correlation between two successive 
orientation vectors is directly governed by the value of the multiplier Mn. 
Direct numerical simulation data show that this correlation is weak for 
low values of the multifractal multiplier, while it is very close to one for 
Mn ~ 0.95. The later case is consistent with the experimental observation 
that vorticity exhibits a preferred alignment with the intermediate eigen 
direction of the local strain rate tensor over a large range of scales. 

Fig. 5.8 Description of the decorrelation vector fn of the vorticity orientation e n + 1 

from the orientation at previous step e n . 

At the end of the cascade (N steps), the following stochastic model for 
the subgrid vorticity is derived: 

TV 

/ ( x , i ) = |u/| Xe*(x , t )+ ( ! - ! ) £ > (5.40) 



146 Multiscale and Multiresolution Approaches in Turbulence 

where the intermittency factor X is defined from a correlation between w 

and CJ' as: 

f J • u/dx3 

x-£&&&>• (5-4I) 

Assuming that the correlations between the multifractal multipliers Mn 

and the decorrelation increments fn is small and that the decorrelation 
cascade is isotropic, one obtains the following estimate for the mean value 
of the subgrid vorticity vector: 

(a ; ' (x , i )}=I(2 N ) 3 / 2 (VXiA4 2 . . .X J v^)x/Q 7 e 5 (x , t ) . (5.42) 

5.2.2.3 Reconstruction of the subgrid velocity field 

The next step in the derivation of the multifractal model consists in: (i) 
assuming that at each grid point the subgrid vorticity is equal to its mean 
value given by Eq. (5.42), i.e. u/(x, t) ~ (w'(x, t)) and (ii) that the subgrid 
velocity is equal to its mean value, which is obtained inserting the mean 
subgrid vorticity vector into the Biot-Savart law (5.24). After some algebra, 
one obtains 

u'(x,t) « (u'(x,t)> 
, (5-43) 

= 123N/2 (y/M1M2...MN) V2*N/3-lVAus(x, t). 

For practical simulations, it is assumed that the multifractal multipliers are 

statistically weakly correlated, yielding 1 = o.372~(2/3+3/2)JV UfM) 

leading to the definition of a closed model. 

5.3 Multigrid-based Decomposition 

As has been extensively described since the beginning of this book, the 
multilevel methods rely on the introduction of several representation levels 
of the solution. In the particular LES context, each representation level 
is considered as a filtering level. Equivalently, each level is defined by its 
cutoff length, therefore only accounting for a limited range of spatial scales, 
with a typical size smaller than this cutoff length. With this formalism, the 
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different filtering levels are obtained by applying recursively some low-pass 

filters (in the wavenumber space) on the original solution of the Navier-

Stokes equations, which can be explicitly known filters, or - in most cases 

- some approximations of expected filters. 

Such a formalism is fully consistent when the numerical method used 

for the simulation is based on a spectral representation of the solution, 

since in this case some simple truncations of the series representation of 

the solution allow defining exactly the different filtering levels. Moreover, 

such a truncation leads to an effective reduction of the number of degrees of 

freedom when considering coarser and coarser representation levels of the 

solution. Such methods have been extensively studied by Dubois and his 

coworkers, who developed the Dynamic MultiLevel (DML) methods [Dubois 

et al, 1999], which will be detailed in Sec. 6.2.2. 

The situation is however quite different when the resolution is performed 

directly in the physical space, by mean of some finite-volume or finite-

difference solvers. Indeed, in such a case: i. any filtering operator must 

have a compact support in the physical space, and ii. the mesh itself and 

the numerical scheme introduce their own implicit filtering of the solution. 

The direct consequence is tha t the real effective filter remains unknown 

during the simulation. For tha t reason, some methods, such as the scale-

residual model and the approximate deconvolution approaches described 

in the previous sections, make use of some approximations of the filtering 

operation, and suppose an a priori form of the filtering operator. It is to 

be noted tha t such approximate filters act as some smoothing operators on 

the solution, but do not allow a practical reduction of the complexity of the 

problem, since the number of degrees of freedom remains the same after 

applying the filtering operator. 

A possible efficient way to perform the filtering operation in the phys­

ical space, leading simultaneously to an effective reduction of the number 

of degrees of freedom of the solution from the finest to the coarsest repre­

sentation level, is based on a multigrid architecture. Such a representation 

of the solution relies on the use of several computat ional grids, with dif­

ferent mesh resolutions. Indeed, each grid level n, denoted by fln, with a 

characteristic mesh size A^n\ can only represent some structures with a 

size larger than the Nyquist cutoff length1 5 , 2A("), and therefore defines 

15In practice, the smallest flow structures that can be represented by the mesh are 
larger than 2A(n) , since the numerical scheme acts as an additional filter which damps 
the highest grid-resolved wavenumbers. 
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naturally a filtering level. Figure 5.9 illustrates the link existing between 
different grid levels and the spectral representation of the solution, in the 
case of a fully embedded multigrid hierarchy. 

Fig. 5.9 Filtering levels definition by the way of a multigrid hierarchy. 

The aim of multigrid-based methods is to adapt the grid resolution in 
time and/or in space to the physical phenomena occurring in the flow, and 
therefore to reduce as much as possible the computational resources associ­
ated to its resolution. It is to be noted that such techniques often appear as 
unavoidable when some numerical methods based on the use of structured 
grids are considered, therefore making it difficult to adapt the mesh resolu­
tion in particular flow regions while keeping an overall reasonable number of 
mesh points. In this context, two main classes of multigrid-based strategies 
exist, and will be detailed in the next sections: 

• The global multigrid methods, which are based on fully embedded 
grids. In this case, each grid level is a discretization of the entire com­
putational domain, and is generally defined, starting from the finest 
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level, by keeping only one point out of m from the previous finer level 
(m is a user-specified parameter). As will be detailed in the next sec­
tion, the numerical methods based on such a grid hierarchy make use 
of a cycling algorithm in time between the different grid levels, in order 
to reduce the computational cost. 

• The local multigrid methods, and the multidomain methods, where the 
grid levels are only partially nested, or are corresponding to different 
domains of the computational area. In that case, which will be detailed 
in Sec. 5.5, a saving in computational resources is obtained by limiting 
the use of fine meshes to some regions with a reduced spatial extent. 

In each case, the intergrid coupling represents the key point of the algo­
rithm. This coupling differs from one method to another, but introduces 
in all cases some intergrid transfer operators, allowing interpolation of the 
data from one grid level to another. These intergrid operators16 can be 
divided into two classes: 

• The fine-to-coarse interpolation operators, generally referred to as the 
restriction operators. These operators, denoted by Rn^n+i allow the 
transfer of the information from a given grid level n to the coarser one 
n + 1. Considering the multilevel splitting of the variables defined in 
chapter 2, the filtered flow variables at any "coarse" representation level 
(n > 1) are therefore defined recursively from the flow variables at the 
finest grid level17, by applying successively the restriction operators. 
At any level n > 1, the filtered flow variables are thus defined as: 

= {Rn-l^n ° i ? n - 2 - m - l o • • • o i?i_>2) U 
(!) (5-44) 

It thus appears that the restriction operator 7?„—n+i allows performing 
explicitly the filtering step from level n to level n + 1, and acts as the 
discrete equivalent of the primary filter G„ + i . For that reason, this 
operator can be chosen such that it also damps the highest resolved 
wavenumbers from a continuous point of view, while sampling simul-

1 6The two terms restriction and prolongation correspond to the ones usually used in 
the multigrid methods developed for convergence acceleration in steady computations, 
see [Wesseling, 1991] for instance. 

1 7The discretization step on the finest grid is considered as the application of the 
primary filter Gi on the continuous solution of the Navier-Stokes equations. 
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taneously the flow variables on a coarser grid. Tha t means tha t the 

effective filtering step between two consecutive levels is not only due 

to the implicit cutoff of the coarse grid, but can also be controlled by 

some modifications of the discrete restriction operator. 

• The coarse-to-fine interpolation operators, referred to as the prolonga­

tion operators. These operators, denoted by Pn^n-i, allow the inter­

polation of the flow variables from any grid level n > 1 to the finer 

level n — 1. Ideally, these operators should act as the inverse of the 

filtering (restriction) operator i ? n _ 1 _ > n . However, because of the mesh 

truncation, some information has been irremediably lost18 during the 

transfer of information from level n — 1 to level n. For tha t reason, 

the prolongation step itself does not allow the recovering of the missing 

information between the successive levels n—1 and n. This information 

is contained in the details ^u^™^1) of level n — 1, which are computed 

as: 

^ ( n - l ) = n ( n - l ) _ p n _ n _ i n ( „ ) 

= (Id - P n ^ „ _ ! o Rn_^n) u ^ " 1 ) . l & - 4 0 j 

From a practical point of view, the prolongation operators should be 

taken as close as possible from the continuous identity operator, in 

order to avoid any additional filtering to the filtered variables at the 

coarse level. 

The introduction of several grid levels raises two main issues tha t need to 

be met to perform a reliable coupling between them: 

• The first one deals with the problem of the subgrid closure tha t has to 

be introduced at each filtering level. This point has been investigated in 

detail by Terracol and coworkers [Terracol et al., 2001; Terracol et al, 

2003], who derived some specific multilevel closures (see Sec. 5.4.2.2 for 

details). 

• The second point deals with the reconstruction of the missing informa­

tion when transferring the flow variables from a given grid level to a 

finer one. It is to be noted tha t this problem arises both in global and 

zonal multigrid algorithms, either in the full computational domain, or 

at a coupling interface between two consecutive grid levels when zonal 

methods are considered. Possible techniques are: i. the use of a tempo-

1 8This point is also highlighted by Domaradzki and Loh [Domaradzki and Loh, 1999] 
and justifies the non-linear step of the velocity estimation model. 
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ral freezing of the high-wavenumber content of the solution (quasi-static 
approximation, see Sec. 5.4.2); or ii. an explicit reconstruction of its 
content (see Sec. 5.5). 

The next two sections are devoted to the description of multigrid-based 
multilevel approaches. 

5.4 Global Multigrid Approaches: Cycling Methods 

This section investigates the multilevel methods which are based on the 
use of several grid levels, which are properly nested, and cover the entire 
computational domain. Due to this particularity, no reduction of the mem­
ory requirements can be expected for the simulation19. In order to reduce 
the cost of the simulations, several authors have proposed to use a cycling 
between the different grid levels during time integration, in order to reduce 
as much as possible the time devoted to the resolution of the finest resolved 
scales of the flow at the first grid level. 

Grid Level 

Time 

Fig. 5.10 Schematic representation of a multilevel cycling procedure. 

9 The memory requirements for such approaches are in fact larger than those from a 
classical monolevel approach, due to the introduction of the coarse grid levels (n > 1), 

w m ( i - i ) 
by a factor of > in three dimensions. 
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5.4 .1 The multimesh method of Voke 

This approach, referred to as multiple mesh simulation, or multimesh [Voke, 

1989; Voke, 1990] appears as one of the first a t tempts to use a multigrid-

based approach to perform LES. It is based on the use of N nested grid 

levels, where, s tart ing from the finest one (level 1), each coarser grid level 

n > 1 is obtained by keeping only every other grid point from the finer 

level n — 1 in each space direction. While the multimesh method should 

theoretically be applied to any number of grid levels, Voke indicates tha t 

there are strong arguments in favor of a simple two-level algorithm. 

The idea of the method is then to perform some V-cycles between the 

different grid levels during time advancement, with the aim to minimize the 

computations at the fine grid levels. The underlying idea is then to solve 

the smallest resolved scales of the flow at the fine grid level only, and with 

less accuracy than the largest ones, being resolved at both the coarse and 

fine grid levels. One multimesh cycle can be described as follows: 

(1) The cycle is s tar ted at the finest grid level, were the flow variables are 

known. Starting from this fine-grid field, some coarser representations 

of the flow are successively generated on the coarser grid levels, by 

interpolation: 

u ( " + 1 ) = i ? „ _ + 1 ( u ( ™ ) ) (5.46) 

where we recall t ha t Rn^n+i denotes an interpolation (restriction) op­

erator from the grid level n to the coarser grid level n + 1. This step is 

referred to as the injection step by the author, and is chosen such tha t 

it preserves continuity (V .u^ n + 1 ^ = 0). 

At this step, the velocity details Su^ between the two levels n and 

n + 1 are also stored on the fine mesh. These quantities are referred to 

as the residual velocity field by the author and are computed as: 

5u(n) = n ( „ ) _ Rn^n+1 (V™>) . (5.47) 

(2) The solution is then advanced during an integration time T at the coars­

est grid level (n — N), by solving the filtered Navier-Stokes equations 

at this level: 

u^N)(t + T)=WST(u(N)(t)^j (5.48) 

where NST denotes the resolution of the filtered Navier-Stokes equa­

tions (including the modelled subgrid terms) during the t ime T. 
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(3) The solution obtained during the previous step is then interpolated to 
the coarser grid level N — I, where the residual velocity field computed 
in the first step is added. The updated value of the velocity field at 
this level is thus computed as: 

n(AT-i) ( t + T) = PN^N_1 („<">(* + T)) + 6u<N\t). (5.49) 

These last two steps allow the achievement of a new realization of the 
large-scale eddy motion at a moderate cost, while keeping some small 
scales structures, which are however not completely correlated with the 
large ones. 

The two last steps are then repeated recursively from level N — 1 to the 
finest level. In order to get a significant reduction of the computational 
cost of the simulation, Voke proposes the use of an equal cost strategy, 
that is to say that the computational time required to perform time 
advancement has to be the same at each grid level. To achieve this, 
and due to the fact that moving from a level to a coarser one involves 
eight times less computational grid points, and twice larger time steps, 
the integration time at each grid level is chosen to be equal to T/16 at 
level N — 1, T/256 at level N — 2 (if any), and so on to the finest level. 

These four steps define one cycle of the multimesh algorithm, each cycle 
being ended at the finest grid level. Fig. 5.11 illustrates schematically one 
cycle of the multimesh algorithm, in the case of a three-level algorithm. 
Before the application of any cycle, the author proposes to perform a coarse 
grid simulation to reach a reliable initial flowfield. 

This algorithm has been applied in some plane channel flow computa­
tions by the author, using an eddy-viscosity closure at each level, and for a 
moderate value of the skin-friction Reynolds number (ReT ~ 200). In these 
simulations, only two grid levels were considered. 

5.4.2 The multilevel LES method of Terracol et al. 

This approach is based on the ideas developed by Voke [Voke, 1990] of using 
a multigrid cycling algorithm to perform unsteady turbulence simulations. 
There however exist two main differences between this method and the one 
proposed by Voke. First of all, a different cycling procedure in time is used 
between the different grid levels. The second point, which appears to be a 

(4) 
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Fig. 5.11 One cycle of Voke's multimesh method, for three grid levels (not at scale in 
time). Filled circles indicate the storage of the velocity details during the injection step. 
Filled squares indicate the updating step of the velocity field (interpolation from coarser 
grid level + frozen velocity increment). 

crucial one, is the problem of the subgrid model which has to be used to 
close the filtered Navier-Stokes equations at each filtering level. 

5.4.2.1 Cycling procedure 

The freezing of the "residual field" (details) between two levels is justified 
by introducing the quasi-static approximation. This approximation can be 
interpreted as the fact that the smallest resolved scales of the flow reach an 
equilibrium state more quickly than the large ones, and thus may require 
less accuracy in time during the simulation. This is a consequence of some 
estimates of the time variation of the detail from a given level n, as derived 
by Dubois and coworkers [Dubois et ah, 1999] and which show that: 

5u (n ) 
< dt 

r(«) (5.50) 

where | . |2 denotes the norm associated to the kinetic energy. This justifies 
the possible freezing of the details from a given level when integrating on 
some coarser grid levels, but it appears practically that some "reasonable" 
freezing times have to be considered to ensure the validity of the quasi-static 
approximation. 
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For tha t reason, the integration times at the coarse grid levels have 

been significantly reduced by the authors in comparison to the approach 

by Voke. In its first version [Terracol et at, 2001], one multigrid cycle was 

composed of only one time step at each level. The number of grid levels 

was also imposed as a parameter of the method (up to four grid levels were 

considered by the authors during their computations). A second version was 

then proposed by the authors [Terracol et al., 2003] to adjust dynamically in 

time both the number of grid levels to be used and the integration times at 

each level. Such a dynamic cycling method was derived in order to ensure as 

far as possible the validity of the quasi-static approximation, or equivalently 

to impose tha t the time variations of the details from each filtering level 

remain negligible (in a way to be defined) during one multigrid cycle. This 

improved strategy will be fully described in Sec. 6.2.3. 

Another point dealing with the cycling strategy is tha t one cycle is 

s tarted by integration of the filtered Navier-Stokes equations at the finest 

grid level, such tha t the details (computed during the fine-to-coarse restric­

tion step) are stored as late as possible during the multigrid cycle, such 

tha t they remain frozen during a period as short as possible. 

One cycle can be described as follows: 

(1) The cycle s tar ts at the t ime t on the finest grid: n = 1 

(2) The filtered variables at level n are time-advanced by solving the filtered 

Navier-Stokes equations during a given integration t ime 2 0 AT„: 

n ( „ ) ^ ( n - i ) + AT^ = ] v s A T n ( V ™ ) ^ " " 1 ) ) ) (5.51) 

7 1 - 1 

where t1-™-1' =t + Y J AT; is the t ime at the end of the integration at 
(=i 

level n — 1. 

(3) If the current grid level is not the coarsest one (n < N), the fine-to-

coarse restriction step is applied. The filtered field at level n + 1 is 

2 0 This integration time may be different from the time step Atn used to ensure the 
CFL stability condition at the grid level n. In the equal-cost cycling strategy of Voke, 
ATjv = T, and AT n = AT„+i /16 for n < N. In the first version of their cycling 
algorithm, Terracol et al. retained one time step as a fixed value for the integration time 
at each level: AT„ = At„, while the second version detailed in Sec. 6.2.3 leads to some 
dynamic estimations of AT n . 
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obtained as: 

u ^ + ^ i ^ ^ j V " ) ) . (5.52) 

At this step, the details from level n are also computed and stored at 
grid level n as: 

5n{n) = n(n) _ pn+^n (Rn^n+1 (u(">)) . (5.53) 

(4) If the current grid level is still not the coarsest one, the two last steps 
(2) and (3) are repeated at level n + 1, and recursively until n = N. 

(5) At the end of one cycle (time t^N^), the filtered variables at each finer 
level n < N are then re-generated during the prolongation step, by 
combining an interpolation of the coarser grid values, and the frozen 
details stored during the cycle: 

n(n) (^W) = Pn+1^n (u<"+1> (*(">)) + 5u™ (tn). (5.54) 

This operation is applied recursively up to the finest grid level. At 
each level, the details have thus been kept frozen during a time of 
i W - t < » > = E £ B + i A T l . 

Fig. 5.12 illustrates one cycle of the cycling algorithm, in the three-level 
case. 

5.4.2.2 Multilevel subgrid closures 

In their works, Terracol et al. [Terracol et al., 2001; Terracol et al, 2003] 
highlighted the great influence of the subgrid closure used at the coarse grid 
levels. Indeed, the finest computational grid is usually chosen such that it 
matches the classical LES requirements in terms of grid resolution. For 
that reason, the coarser grid levels are generally much too coarse to solve 
the filtered Navier-Stokes equations with a standard subgrid model, since 
the resolved scales may not satisfy the classical LES hypothesis, resulting 
in a bad behavior of the model. 

Two specific possible multilevel closures were therefore proposed in their 
studies. The major idea relies on the fact that, at a given "coarse" level 
n > 1, some smaller scales than the grid-resolved ones are already resolved 
at finer grid levels, and therefore appear to be of great interest to compute 
the subgrid terms, since they are associated to a significant part of the 
subgrid information. The proposed improved closures therefore directly 
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Fig. 5.12 One cycle of Terracol's multilevel LES method, for three grid levels. Filled 
circles indicate the storage of the velocity details during the injection step. Filled squares 
indicate the updating step of the velocity field (interpolation from coarser grid level + 
frozen velocity detail). 

take into account the information resolved at finer levels21. Such closures 

used at the coarse grid levels are thus expected to be much more accurate 

than conventional ones, since no particular hypothesis is required for the 

unresolved scales of motion. 

(a) D y n a m i c m i x e d mul t i l eve l c losure 
The first proposed closure is based on the derivation of a dynamic mixed 

closure, as proposed by Zang et al. [Zang et al., 1993] in the classical LES 

context. The ./V-level extension of this approach performed by Terracol et 

al. can be described in the incompressible formalism22 as follows. 

First, the following decomposition of the velocity field is considered at 

level n: 

u = u («) (i) (5.55) 

It is worth noting tha t three main contributions arise in this decomposition 

of the velocity field: 

2 1 One can note that the possible use of improved multilevel closures on the coarse 
levels was already mentioned by Voke at the end of his works. 

22 The original developments were carried out in the context of compressible flows. 
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• u ^ is the resolved velocity field at level n, and is formally associated 

to some scales with a typical size larger than the grid cutoff length 

A ( r e ) . 

• <W) (I < n) is the velocity fluctuation between the two successive res­

olution levels I and I + 1. An impor tant point is tha t this quanti ty 

is associated to some smaller scales than the scales resolved at level 

n, but which are however resolved during the global simulation. As a 

consequence, they can be directly used to compute the subgrid terms 

at level n. 

• u ' represents the subgrid velocity fluctuations at the finest resolution 

level, and is thus associated to some scales tha t remain unresolved 

during the simulation. 

The main idea of the multilevel closures is to use directly a maximum 

amount of resolved information, or in other words to use in a deterministic 

way both the resolved field u ' " ' at level n, but also the information carried 

by the details from finer levels 5u^ (I < n). 

By introducing decomposition (5.55) in the expression of the subgrid term 

T(" ) at grid level n, the following decomposition of this term is obtained2 3 : 

r 
(n) = L ( n ) + C ( n ) + R ( „ ) ^ ^ 

where the three terms L/ n ) , C^n\ and R( n ) refer respectively to the re­

solved, cross, and Reynolds stress tensors of the subgrid-stress tensor: 

• LA") is based on all the resolved scales of the simulation, so tha t it 

represents the resolved part of the subgrid stress tensor r ^ at level n. 

Its expression is given by: 

i>) = 5™ ((uw + Y, Su{n) J ® ( n ( n ) + Y,6u(n))) (5-57) 

- S? ( u(n) + Y 5u(n)) ® Gi ( n ( n ) + $3 6 n ( n ) ) • 

2 3This decomposition can be seen as a iV-level generalization of Germano's consistent 
decomposition 
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• 

This tensor is not only based on the grid-resolved scales at the level n, 

but also takes advantage of the smaller scales resolved at finer levels. It 

can be interpreted as an extension of Bardina 's scale similarity model 

to the multilevel case. This term accounts for a rather large amount 

of scales interactions: the large scales interactions, as the classical Bar-

dina term, but also the interactions between large scales and the small 

scales resolved on the finer levels, and between these small scales them­

selves. This part of the subgrid stress-tensor is thus associated to all 

the deterministic information tha t is directly resolved. 

C^*1' is the cross-term tensor. It accounts for interactions between the 

large scales and the subgrid scales from the finest level (which remains 

unresolved), and between small scales resolved at finer levels and the 

unresolved subgrid scales. 

This term reads: 

C(n) =g»(( u ( n ) + ^ <5u(n) j ® u ' j (5.58) 

1=1 

n-1 

- g? I n<"> + J25u{n) ® Qi K) 

+ G? f u'<8> ( u W + ^ W -

/ n - 1 

\ i=i 

• TctSn' is the Reynolds stress-tensor, and accounts for all the interactions 

between the unresolved subgrid scales. Its expression is: 

R("> = C7f (u ' ® u ' ) - g? (u ' ) ® Q? ( u ' ) . (5.59) 

It thus appears tha t the subgrid stress tensor at each level is composed of 

three different contributions, associated to different kinds of scale interac­

tions. Using this property, it is to be noted that the first tensor involved 

into this decomposition (I/™') is directly resolvable, since it accounts only 

for some interactions between some scales which are resolved during the 

simulation. Since this tensor accounts directly for a large amount of sub-

grid interactions, the authors therefore propose to keep its expression when 

deriving a subgrid closure for r^n'. The only terms which are subject to 
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a statistical representation are then the cross and Reynolds subgrid terms, 

C(™' and Tv-n> respectively. 

Following the developments of Zang et al. in the classical monolevel case, 

Terracol et al. propose to model these two terms using a Smagorinsky model 

for which an appropriate value of the Smagorinsky coefficient is computed 

by mean of the dynamic procedure. 

First, the subgrid stress tensors at two consecutive filtering levels n and 

n + 1 are modelled using similar expressions, involving the same constant 

Cd , as: 

T(") = L(«) - 2C{
d
n) (A^nA 

.(n+i) __ L T ( " ) _ 2Ci-n) (A(n+1) 

r(«) r(«) 

(n+l) ^(n+1) 

(5.60) 

(5.61) 

where r(") 2 S ( n ) : S ( n ) . 

The tensor L T is obtained2 4 similarly to i/™) by introducing the velocity 

field decomposition (5.55) at level n into the expression of r ' n + 1 ^ : 

.T{n) 
L r W = a r + 1 uM + £<5u («) uW + ^ ^ u (n) (5.62) 

n-1 
1=1 

gn+1 n ( „ ) + £ Su(n) ^ gn+1 „ ( » ) + £ 5u(r. 

i = l Z=l 

By applying the two-level Germano identity (4.10) to the two 

parametrizations of the subgrid-stress tensors (5.60) and (5.61), the fol­

lowing relation is derived: 

£ (n+ i ) = ( L TM _ Gn+i * L(n) j _ 2C(n )M(™+ 1) (5.63) 

where the tensor M^" ' is given by: 

J^(n+l) _ I ^(n+l r(«+l) g(»+l) 
(A(™))2Cn+1*( 

r(») g(n) 

(5.64) 

24The reader should take note of the fact that L T W ^ l / n + 1 >, which should be 

obtained from the the velocity field decomposition at level n + l instead of the one at 

level n. 
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and 

£ ( » + l ) = Qn+i ^ ^-(n) ^ n ( „ ) \ _ - ( „ + l ) 0 n ( n + l ) > ( g gg) 

As in the original dynamic procedure of Germano et al. [Germano et al., 

1991], an optimized value for the coefficient C^ is then obtained by a 

least-square minimization of the residual of relation (5.63): 

f £ (n+D _ (LT(») _ G * L(n)\\ . M ( „ + l ) 
Mn> - -A v i± (^m\ 
° d 2 M ( « + i ) : M^+i) ' l j 

Because of the presence of the scale-similarity term \Sn> in the parametriza-

tion of T^1' , which exhibits in practice a high degree of correlation with the 

real subgrid stress tensor at level n, the authors report some values of C^ 

which are roughly one order of magnitude lower than the values obtained 

with the classical dynamic Smagorinsky model. 

The authors however also indicate tha t this model is subject to the 

same limitations as the dynamic Smagorinsky model, since some numerical 

instabilities can occur when too important variations or intense negative 

values of the parameter C^ a r e obtained. To alleviate this phenomenon, 

they recommend the use of some stabilization techniques such as space 

averaging or clipping. 

(b) Genera l i zed mul t i l eve l c losure 
The second possible multilevel closure tha t was proposed and used by the 

authors relies directty on the use of the generalized Germano identity, as 

already developed in Chapter 4. Indeed, this relation expresses the subgrid 

terms at any coarse level n > 1 as a function of the resolved field at finer 

levels, while the only unresolved contribution is due to the subgrid term 

from the finest representation level (n = 1). The expression of the subgrid-

stress tensor at any level n > 1 then reads: 

r ( » ) , g 2 » ( / S 9 ! ( A ( I ) , u « ) ) 
n - l (g Q^\ 

+ E £™+2 (G"»+i * (n ( m ) ® n ( m ) ) - n ( m + 1 ) ® n ( m + 1 ) ) 
m— 1 

where the only parametrizat ion (fsgs denotes a usual subgrid model) occurs 

for the subgrid-stress tensor from the finest level T^K 

Such a closure appears very general, since no particular hypothesis is 

performed on the nature of the interactions with the subgrid scales (except 
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at the finest level), thus accounting for some complex physical phenomena 

such as for instance backscatter. 

5.4.2.3 Examples of application 

The two proposed models were assessed by the authors in some plane chan­

nel flow simulations [Terracol et at, 2001; Terracol et at, 2003]. For the 

results presented in this part , the V-cycling strategy between the differ­

ent grid levels is simply based on integration times equivalent to one t ime 

step at each level25, the t ime step being chosen to ensure a CFL number 

of roughly one at each grid level. The value of the skin-friction Reynolds 

number ReT which has been considered is 590 (some computations at the 

lower value ReT = 180 were also carried out by the authors) . Three dif­

ferent multilevel simulations (using three grid levels26) have been carried 

out: the first one uses a classical dynamic Smagorinsky closure at each 

level; the second one uses the dynamic mixed multilevel closure; and the 

last one uses the generalized multilevel closure (the dynamic Smagorinsky 

model is retained at the finest grid level). In each case, the finest grid level 

matches the classical LES resolution requirements, and each coarser one is 

defined from the previous one by keeping every other grid point in each 

space direction. 

The results are compared to the DNS results of Moser et al. [Moser 

et al., 1999] on the same configuration, and to some fine-grid monolevel 

LES results where the dynamic Smagorinsky model is used. 

As shown by Figs. 5.13 and 5.14, the multilevel simulations using an 

adapted multilevel subgrid closure lead to some results in good agreement 

with those from the fine monolevel LES, for both mean and fluctuating 

quantities. This is however not the case with a usual dynamic Smagorinsky 

model at each level, since the coarsest grid appears too coarse to use a fully 

statistical modelling of the subgrid scales. The authors report the fact tha t 

the near wall streaks, while not resolvable on the coarse grid levels, are well 

reproduced during the multilevel simulations, thus showing the ability of 

the method to account for some physical phenomena resolved only at the 

finest level. 

25See Sec. 6.2.3 for some results obtained with a dynamic version of the cycling pro­
cedure 

2 6 With three grid levels and the simple cycling procedure, the authors report a re­
duction of a factor of roughly five in CPU time in comparison with a fine monolevel 
simulation. 
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Fig. 5.13 Mean streamwise velocity profiles for the plane channel flow simulations 
at ReT — 590. Open circles: DNS (Moser et at, 1999); Filled circles: fine monolevel 
LES (dynamic Smagorinsky model); Dash-dotted line: three-level simulation with the 
dynamic Smagorinsky model at each level; Solid line: three-level simulation with the dy­
namic mixed multilevel closure; Dashed line: three-level simulation with the generalized 
multilevel closure. From (Terracol, 2001). 

5.5 Zonal M u l t i g r i d / M u l t i d o m a i n M e t h o d s 

This section investigates the use of zonal multidomain methods, which aim 

at increasing locally only the resolution of the mesh. Such mesh refinements 

indeed appear necessary in some flow regions corresponding to the presence 

of small turbulent structures which require a deterministic resolution. This 

may be for instance the case in the lower part of the boundary layer in the 

case of wall-bounded flows, where the turbulence near the walls is subject 

to strong anisotropic events. In such configurations, the use of partially 

embedded grids, or different domains with different grid resolution makes 

it possible to introduce some regions of high resolution, without increasing 

the overall cost of the simulation. Fig. 5.15 illustrates the two possible 

classes of method which allow such a local grid refinement27: 

2 7As can be observed on Fig. 5.15, the zonal multigrid methods are more difficult to 
implement in a numerical solver than the multidomain approaches. Indeed, the solver 
has to be adapted to handle several grid levels and perform a coupling between them. 
However, the practical applicability of the method is easier than the multidomain ap­
proach, since it requires less domain partitioning when introducing a new refinement 
level (see Fig. 5.15). 
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Fig. 5.14 Resolved turbulent kinetic energy profiles for the plane channel flow simula­
tions at ReT = 590. Open circles: DNS (Moser et al., 1999); Filled circles: fine monolevel 
LES (dynamic Smagorinsky model); Dash-dotted line: three-level simulation with the 
dynamic Smagorinsky model at each level; Solid line: three-level simulation with the dy­
namic mixed multilevel closure; Dashed line: three-level simulation with the generalized 
multilevel closure. From (Terracol, 2001). 

(1) Zonal multigrid methods (left part in Fig. 5.15) are based on the use of 
several grid levels, the finer ones being embedded partially in the coarser 
ones. The coarsest grid level is therefore a discretization of the entire 
computational domain, while finer and finer grids correspond to some 
flow regions with smaller and smaller spatial extent. In this case, the in-
tergrid coupling problem in the parts of a grid level overlapped by finer 
grid levels is exactly the same as in the global multigrid approaches, 
and therefore involves the same kind of numerical techniques28 (inter-
grid transfer operators, adapted subgrid closure in these parts). These 
methods have been widely investigated in the past for steady CFD com­
putations, and usually coupled with the use of an adaptive refinement 
strategy29. The main techniques which make use of such a zonal multi-

2 8As the global multigrid approaches, the local approaches may also introduce a cycling 
algorithm in time. However, in most cases, CPU saving is only expected by reducing 
the spatial extent of the fine grid regions, and a classical time-consistent integration 
algorithm is used in time, the timestep being imposed by the finer grid. 

2 9 The use of adaptive refinement techniques for LES will be developed in Chapter 6. 
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grid hierarchy are the Adaptive Mesh Refinement (AMR) technique 
developed by Berger et al. [Berger, 1982; Berger and Oliger, 1984; 
Berger and Colella, 1989] and Quirk [Quirk, 1994], and the MultiLevel 
Adaptive Technique developed by Caltagirone, Angot and Khadra [Cal-
tagirone et al, 1995; Angot et al, 1992] and by Mc Cormick [Mc 
Cormick, 1994]. 

(2) Multidomain methods (right part in Fig. 5.15) are based on the use of 
several computational domains, which do not overlap each other, and 
correspond to different mesh resolution. 

ii===-
i=T> II==== —^ SS— HE HE 

ii— 

Fig. 5.15 Partitioning of the computational domain in the case of a zonal multigrid 
method (left), and a multidomain approach (right). Thick lines correspond to the bound­
aries of the different domains. 

As highlighted in the various works based on the use of a zonal multigrid (or 
multidomain) approach, it is imposed to the grid hierarchy to obey to some 
specific topological constraints. These constraints may be summarized as 
the fact that any grid level n can only exchange some information with its 
immediate next finer or coarser level n — 1 and n + 1 respectively. This point 
is illustrated in the three-level case by Fig. 5.16 displaying a coherent (left 
part) and an incoherent (right part) organization of the levels. 

The main difficulty that arises in both zonal multigrid and multidomain 
approaches is the coupling at the interface between two levels with different 
grid resolution. The typical problem encountered in such a configuration 
is described by Fig. 5.17. Indeed, when interfacing two domains, referred 
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Fig. 5.16 (A) Coherent multilevel organization; (B) Incoherent organization: the finest 
level (n = 1) cannot exchange directly some information with the coarsest level (n = 3). 

to as the fine and the coarse domain 3 0 , there exists theoretically a j ump 

in the wavenumber content of the solution through the interface, since the 

fine grid allows the resolution of some finer turbulent structures than the 

coarse one. 

In most cases, this frequency jump is not accounted for, and some nu­

merical approaches based on a continuous t reatment of the flow variables 

(or of the numerical fluxes) are considered in the various works dealing with 

this topic. However, such a t rea tment leads to the generation of a buffer 

layer in the fine grid domain, in which some turbulent structures smaller 

than those resolved on the coarse grid are progressively regenerated. This 

feature is illustrated by Fig. 5.18. In this layer, the solution is an inter­

mediate representation between the two filtering levels n and n + 1, as in 

the "gray area" typical of any global RANS/LES approach (see Chapter 7). 

This implies tha t the coupling boundaries between two successive grid lev­

els should be located in some regions where the flow structures are well 

represented on both the two levels, which may become a very strong and 

penalizing assumption when considering fully turbulent flows. 

Several authors have been developing some numerical solvers which are 

based on the use of locally refined grids to save computat ional resources 

when performing LES or DNS of turbulent flows. 

For instance, Sullivan et al. [Sullivan et a/., 1996] developed a grid 

nesting method to perform LES of planetary boundary layer flows with 

3 0 For the sake of clarity, only two domains - associated to the consecutive filtering 
levels n and n + 1 - will be considered in the following developments, which however 
apply to an arbitrary number of levels. 
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Fig. 5.17 Sketch of the coupling problem at the interface between two domains/grids 
with different spatial resolutions. 

Buffer region 

Fig. 5.18 Zonal multilevel LES approach with continuous (left), and discontinuous 
(right) coupling at the interface. A continuous treatment creates a buffer layer ("gray 
zone") in which smaller structures are progressively regenerated. 

streamwise periodicity. In their approach, some Dirichlet conditions de­
rived by interpolating the coarser mesh variables were used to define the 
boundary conditions for the fine grid (except at physical boundaries of the 
domain). A correction of the coarse grid numerical fluxes was also per­
formed to ensure fluxes continuity in the overlapping regions and at the 
interfaces between two grid levels. 
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A similar approach was also applied by Boersma et al. [Boersma et al., 

1997] to the simulation of a two-dimensional time-developing mixing layer. 

In this work, the authors showed the ability of such an approach to increase 

locally the accuracy by increasing the resolution. However, they mention 

the fact tha t the fine-to-coarse grid communication should become a key 

element of the method for fully three-dimensional turbulent flow simulation. 

Manhar t [Manhart, 1999] and Manhar t and Friedrich [Manhart and 

Friedrich, 1999] applied a similar methodology to perform some DNS of 

turbulent boundary layers at moderate Reynolds numbers. The approach 

was applied to both the case of a zero pressure gradient and to the case of a 

turbulent boundary layer subject to a streamwise adverse pressure gradient, 

for some values of the Reynolds number based on the inlet momentum 

thickness ranging from Reg = 300 to Reg = 800. 

Kravchenko et al. [Kravchenko et al., 1996; Kravchenko et al., 1999] 

developed a B-spline/spectral method for the DNS of turbulent flows, which 

was also used to perform a LES of the flow past a cylinder at a significant 

Reynolds number [Kravchenko and Moin, 2000]. In this approach, a highly 

accurate interpolation of the flow variables, based on the use of a B-spline 

technique, was used at the coupling interfaces between two domains with 

different grid resolution, therefore leading to a highly accurate continuous 

t reatment between them. 

While most of the works dealing with multidomain (or zonal multi-

grid) approaches rely on a continuous t rea tment between two adjacent do­

mains, a radically different approach has been developed by Quemere et al. 

[Quemere et al., 2001]. Indeed, in these works dealing with the development 

of a multidomain approach for LES, the authors propose to explicitly take 

into account the different characteristic lengths associated to two adjacent 

domains with different grid resolution. Their approach therefore introduces 

a discontinuity of the flow variables at the coupling interface between two 

consecutive grid levels n and n + 1. It is recalled at this point that level n 

corresponds to a finer mesh resolution than level n+1. 

In their works, the authors consider the case of two adjacent, partially 

coincident domains £ln and f2 n + 1 , of respective associated characteristic 

cell sizes A*™) and A(™+1' = rA^ n ' , where the aspect ratio r is an integer 

larger than unity3 1 . 

3 In practice, the authors investigated some values of the aspect ratio r between two 
and four. 
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Fig. 5.19 Schematic representation of the coupling problem at the interface between 
two domains/grids with different spatial resolutions. Filled symbols represent real cell 
centers (referred to as x/j), and empty symbols the ghost cell centers (dashed lines 
indicate the location of the ghost cells, referred to as x g ) . Squares are points of the fine 
grid, and circles points of the coarse grid. 

This configuration is described in Fig. 5.19, for r = 2, in the case of 

a cell-centered representation of the flow variables. The problem is then 

to define in a proper way some values for the aerodynamic quantities in 

the ghost cells belonging to each domain, accounting for the j ump in the 

wavenumber content of the solution illustrated by Fig. 5.17. At the inter­

face T between the two domains, the problem is formulated as 3 2 : 

r(«) r / u rr(™+i)| (5.68) 

T h i s r e l a t i o n is fully c o n s i s t e n t w i t h t h e fol lowing m u l t i s c a l e d e c o m p o s i t i o n : 

r(») [(«+!) +§UM (5.69) 

where the velocity detail SuSn> may be non-negligible in the case of devel­

oped turbulence. Therefore, a continuous t rea tment of the flow variables 

at the interface would thus only be possible in flow regions correspond­

ing to very low values of <5u(n), e.g. low-turbulence regions. However, in 

such cases, the method should become inefficient in terms of computat ional 

resources saving. 

Following this observation, the authors have proposed a method to 

transfer properly the information between the two domains without loosing 

3 2 As pointed out by the authors, the discontinuity of the flow variables at the interface 
also implies a discontinuity in the numerical fluxes on the respective fine and coarse sizes 
of the interface, leading to a non-conservative boundary treatment. 
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accuracy in the high wavenumber content of the fine domain in the vicinity 

of the coupling interface I \ This coupling is two-way: 

(1) The fine-to-coarse coupling is the easiest one to perform, and appears as 

quite straightforward. Indeed, it is necessary to remove the information 

associated to the highest resolved wavenumbers from the field resolved 

at level n to define properly some values of the filtered aerodynamic 

field at level n+l. This coupling is based on the use of the restriction 

operator Rn_>n+i, which makes it possible to evaluate the value of 

u («+i) i n the ghost cell of the domain ttn+i (at point x ^ + ') from the 

values of 
u(«) i n 

the real cells of the domain fln (denoted by x^ ). 

The values of û ™"1"1-1 at point Xg are therefore evaluated as: u(«+ 1 ) (x( ; "
+ 1 ) ) = i ? _ „ + 1 ( u ( « ) ( x ^ ) ) 

V{
G?+1} - h ^ "' (5-70) 

= ^ m £ *(B)(>4n))-vJr> 
VG x ( » ) f V ( » + i ) 

where V£ denotes the volume of the fine grid real cell with center x^ , 

and VQ the volume of the coarse grid ghost cell with center Xg 

It is to be noted tha t this restriction operator acts as a discrete box 

filter with a cutoff lengthscale equal to ( VQ 

(2) The coarse-to-fine coupling is somewhat more difficult to perform. In­

deed, in this case, it is necessary to add some high-wavenumber infor­

mation to the field values known at the coarse level. 

Following relation (5.69), the values of the field in the ghost cells of the 

fine level are expressed as: 

u W ( x ^ ) = u ( n + 1 ) ( x ^ ) + 5u(") (xg l ) ) . (5.71) 

The values of the field at the fine grid ghost point Xg at the coarse 

filtering level, u ' n + 1 ' ( x g ) is expressed by prolongation of the values 

of u'™"^1-1 at the coarse grid points: 

u (»+D(x£>) = P „ + 1 _ ( u ( « + 1 ) ( x g + 1 M (5.72) 
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where the subscript R, G is introduced since both real and ghost points 
may be used for the prolongation interpolator33. 
To provide an estimation of the details Su^ at the fine grid ghost 
points, the authors propose to perform a zero-th-order extrapolation of 
their value in the last row of real fine grid cells close to the interface: 

<JuW(x^n)) = Cs • W " ) ( x ^ ) (5.73) 

where the coefficient Cs is introduced to ensure the stability of the 
approach34. The value of <5u(") in the last row of real cells of the fine 
grid is computed as: 

<5u(")(x^) = u ^ x ^ ) - u ( " + 1 ) ( x ^ ) 

= u ( " ) ( x W ) - P „ + 1 ^ „ ( H ( » + 1 ) ( x g + 1 ) ) ) 

The authors applied their method to the simulation of plane channel flow 
computations, for skin-friction Reynolds number values up ReT = 590, 
where some fine grids were considered in the vicinity of the walls, while 
the core region of the channel was treated using a coarse grid. Several 
aspect ratios of the mesh resolution between the two grids have been inves­
tigated (between two and four), and up to three-level computations were 
performed. In all cases, the obtained results were comparable to those from 
fine monolevel simulations. The approach has also been extended by the 
authors in a later study [Quemere and Sagaut, 2002] to the case of zonal 
RANS/LES coupling, as will be detailed in Chapter 8. 

In some more recent works, carried out by Mary and Nolin, this ap­
proach has been applied to the simulation of some more complex flow such 
as the flow over a three-dimensional delta wing [Mary, 2003], or the flow 
past an A-airfoil wing profile [Mary and Nolin, 2004]. 

3 3In their works, Quemere et al. used a third-order accurate interpolation operator 
involving a ten-point stencil (in three dimensions). 

The authors found the value C§ = 1 to lead to a quite strong overestimation of 
the reconstructed turbulent fluctuation. The value Cs = 0.95 was found as a good 
compromise. 

(5.74) 



This page is intentionally left blank



Chapter 6 

Unsteady Turbulence Simulation on 
Self-adaptive Grids 

6.1 Turbulence a n d Sel f -adapt iv i ty: E x p e c t a t i o n s and 
Issues 

We now discuss multiscale/multilevel methods for turbulence simulation 

tha t rely on the use of self-adaptive grids. The term grid is here to be un­

derstood in a general sense, which includes all methods in which the number 

of degrees of freedom and /or their locations in the space/wave number do­

main is evolving during the computation. Therefore, usual computat ional 

grids for finite volume and finite difference methods but also generalized 

h/p methods are included in the present discussion. 

The purpose of such a method is to significantly lower the cost of the 

simulation by optimizing the number of degrees of freedom used to capture 

the dynamics of the resolved scales. While a purely static grid will be 

associated to the maximum computational cost, a gain is sought here by 

taking into account the features of the resolved scales and adapt ing the 

computational grid to them. 

The methods addressed in this chapter provide such a reduction, and 

lead to a multilevel description of the resolved scales. Using these methods 

therefore brings in the additional issue of the coupling of the usual turbu­

lence models with the dynamic grid representation of the resolved scales, 

new turbulence closures best suited being sometimes required. 

Grid refinement/adaptat ion basically requires us to define a refinement 

criterion which will trigger the modification of the grid. Such a criterion 

is generally based on two different elements: a quanti ty whose amplitude 

will be checked, and an arbi trary threshold level beyond which the grid will 

be refined. This quanti ty is usually defined or interpreted as a measure of 
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the error committed in the representation of the large scales1. Numerical 
methods based on adaptive grids are not new and are discussed in many 
textbooks [Rude, 1993; Mc Cormick, 1989; Mc Cormick, 1992; Dubois et al., 
1999], but it will be shown here that the turbulent nature of the solution 
brings in new deep theoretical and practical problems. 

To illustrate the specific problems associated with the simulation of 
turbulence, let us consider the following continuous generic conservation 
law system, whose exact solution solution is u: 

°^ + V.F(u,u) = 0 (6.1) 

where F(u, u) is a nonlinear flux which accounts for all acceleration terms 
including possible external forcing terms. We further assume that u is a 
turbulent solution in the sense that it is chaotic and exhibits a broadband 
spectrum, and that its smallest active scales have a characteristic size r\ 
(the Kolmogorov scale in the common turbulence theory). 

Let now consider the computed discrete approximation of u, Uh. For the 
sake of simplicity, it is assumed that the computational grid has a charac­
teristic mesh size h, and that the numerical method used to compute Uh has 
a characteristic resolution length hr. The maximal cutoff frequency of the 
simulation, conceptually associated to the Nyquist frequency, is based on 
hr. We can make the distinction between two general classes of simulation 
approaches: 

(1) Approaches in which the ideal targeted solution is grid-independent, 
i.e. the ideal solution is sensitive to neither h nor hr. Both Reynolds 
Averaged Numerical Simulation (RANS) methods and Direct Numeri­
cal Simulation (DNS) belong to this category. 

(a) Direct Numerical Simulation is characterized by hr « rj. The tar­
geted solution is the instantaneous exact solution of the original 
problem. 

(b) In the case of RANS, hr S> r\ since all turbulent fluctuations are 
modelled, and one can define a characteristic length scale for the 
mean field, h, which is such that 

1Many methods are based on the tracking of regions with large gradients of the 
solution, with the implicit assumptions that the committed error in the numerical ap­
proximation is maximum in these regions, while it will be much smaller in areas where 
the computed field varies smoothly. 
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h > hr > j]. (6.2) 

The targeted solution is not the exact solution, but its statistical 

average. 

(2) Approaches whose ideal solution definition can intrinsically be tied to 

the resolution of the simulation. A typical example is Large Eddy 

Simulation in which hr 3> 7j. It is worth noting tha t the ideal solution 

is not the exact solution, but its restriction onto an arbi t rary basis 

associated to a given set of degrees of freedom. Therefore, if this basis 

is directly tied to hr, changing h and /o r hr automatically leads to a 

change in the definition of the ideal LES solution. 

Let us now consider the discrete problem, which is wri t ten as follows: 

?jjr+Vh-Fh(uh,uh)=0 (6.3) 

where 5/St, Vt and Fh are the discrete approximations of d/dt, V and F, 

respectively. The approximated flux F^ is assumed to fulfill the consistency 

condition lim Fh(u.u) = F(u,u). 

Let us introduce the bases for the definition of an error estimate , which 

will be used to decide where and when to refine the computational grid 

(i.e. to change hr and /or h). The key problem in ensuring the reliability 

of the results is to control the error Err(/ i r ,A) = ||« — Ufc||.M , where || • 

|| M is an arbi trary norm. The characteristic scale A of the ideal targeted 

solution is equal to 77 and h for DNS and RANS, respectively. In most LES 

simulations, one has A oc hr. Since the solution is assumed to be chaotic, 

all discrepancies in the boundary and initial conditions between the exact 

and the discrete problem will be continuously amplified. Therefore, only 

control of the statistical moments (or in an equivalent way of the probability 

density function) of the solution can be expected over long times. A relevant 

definition of the error must rely on statistical moments of u and Uh and 

must be consistent with the definition of Direct Numerical Simulation, i.e. 

lim Err( / i r ,A) = 0. (6.4) 

A deeper insight into the nature of the committed error is recovered by 

identifying the different sources of error: 
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Err(hr, A) = E r r n O r , A) + Eirh(hr, A) + Errr{hr, A) (6.5) 

where 

• Er rn ( / i r , A) is the projection error, associated to the fact tha t the exact 

continuous solution is approximated using a finite number of degrees of 

freedom (even if some numerical approximations, like the finite element 

method, provide the users with continuous approximations of the exact 

solution). This is an intrinsic error tha t can not be eliminated in the 

general case. A consistency constraint is 

lim Err n ( / i r ,A) = 0 . (6.6) 

• Err^(ft,r,A) represents the discretization error, which is related to the 

fact tha t space and time derivatives are not evaluated in an exact way: 

V h ( u ) - V ( u ) # 0 . (6.7) 

The numerical method being consistent, we have 

lim Enh{hr,\) = 0. (6.8) 

• Er r r ( / i r ,A) is the resolution error, which is not equivalent to the dis­

cretization error. It accounts for the fact that , even if the derivatives 

are exactly evaluated, the flux function is not exact since all scales of 

the exact solution are not resolved: 

Fh(uh,uh) ^ Fh(u,u) = F(u,u). (6.9) 

Accordingly to the definition of DNS, Enr (hr,rj) vanishes when hr « 

77. In both RANS and LES approaches the non-linear flux function 

F(u,u) includes the selected turbulence model for unresolved scales 

of motion. The resolution error consequently takes into account the 

modelling error, which originates in the turbulence model flaws. 

The problem is therefore to minimize both the numerical and resolution 

error, the best (or ideal) solution being defined as 
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Err(/ir, A) = Erru(hr, A) (ideal solution) (6.10) 

which is equivalent to say that 

Errh(hr, A) + Eny(/i r , A) = 0. (6.11) 

Let us now consider the three cases identified above: 

• In DNS, both the projection error and the resolution error are assumed 
to be small, the main error source being the discretization error. Dy­
namic grid techniques will therefore aim at decreasing its intensity. The 
error sensor should be designed so that to track the discretization er­
ror. Convergence of the refinement technique is ensured since the ideal 
solution is not an explicit function of the mesh size. 

• In RANS, the projection error is small2 with respect to the discretiza­
tion error and the resolution error. Since the resolution error mainly 
comes from the modelling error and that RANS-type models do not 
explicitly depend upon h and hr, the purpose of the grid-refinement 
techniques will be the same as in DNS, i.e. to reduce the discretization 
error. Since they do not raise specific closure problems, AMR-RANS 
methods will not be detailed here. Their efficiency is illustrated in Fig. 
6.1, which displays the mesh and the viscous turbulent flow obtained 
around a 2D transonic airfoil using a multigrid-AMR technique along 
with the Wilcox k — to turbulence models (see [Jouhaud, Montagnac 
and Tourette, 2005] for details). 

• The LES case is much more complex if the scale separation length be­
tween resolved and unresolved scales is an explicit function of h and/or 
hr. Here, the three error terms are a priori important, but since the 
exact solution is not known, only the discretization and the resolu­
tion error can be tracked down in the simulation. The purpose of grid 
refinement is then to reduce these two errors, but the error estimate 
must be constructed carefully. As a matter of fact, a change in the 
mesh size (and then in h and hr) will lead to an error decrease, but 
also in a change in the ideal targeted solution. The convergency of the 
error estimation-minimization loop toward the original ideal LES is not 

It must be remembered here the ideal RANS solution is not the instantaneous tur­
bulent field, but its statistical average, which is usually a very smooth function that can 
easily be captured on a relatively coarse grid. 
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guaranteed in the general case, too crude an error estimate leading to 
a DNS-type simulation. 

Fig. 6.1 AMR-RANS simulation of the compressible flow around a 2D airfoil. Left: 
adapted grid, with 3 refinement levels; Right: Mach number isolines. Courtesy of J.C. 
Jouhaud, CERFACS, France. 

6.2 Adaptive Multilevel D N S and LES 

This section describes the DNS and LES methods which are based on an 
adaptation of the grid3 dynamically in time, in order to minimize the error 
E r r 0 r , A). 

The case of dynamic local multilevel LES, which relies on a dynamic 
adaptation of the mesh resolution locally both in space and time, will be 
detailed in Sec. 6.2.1. 

Some other techniques, based on a global adaptation of the grid resolu­
tion in the overall computational domain will be also investigated. These 
techniques include the Dynamic MultiLevel (DML) method, which is de­
tailed in Sec. 6.2.2, and the dynamic multilevel LES technique developed 
by Terracol, Sagaut and Basdevant, presented in Sec. 6.2.3. 

3 We recall that the term grid stands for all the methods with varying numbers of 
freedom, and not only for those based on the use of a discretization mesh in the physical 
space. 
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6.2 .1 Dynamic Local Multilevel LES 

These techniques rely on the basis of Adaptive Mesh Refinement (AMR) 

methods, and aim at increasing locally in space the grid resolution, in a 

dynamical way. This is done in practice by superimposing finer grids on 

an initial coarse grid in the flow regions where an increased grid resolution 

is needed. This leads naturally to a local multigrid hierarchy as the one 

described in Sec. 5.5. 

In such a case, the coupling between the different filtering/grid levels 

obeys the same formalism as local multigrid techniques, and will therefore 

not be detailed again. The reader is referred to the developments presented 

in Sec. 5.5. 

One of the crucial points in dynamic mesh techniques is the localiza­

tion of the regions tha t require an improvement in the grid resolution. At 

this point, one usually introduces a refinement sensor to identify the flow 

regions in which the discretization and resolution errors are expected to 

be significant4. This sensor has therefore to be designed so tha t it detects 

the flow regions where the error is large. Since the error includes different 

contributions, different kinds of refinement sensors can be used: 

(1) The numerical sensors which aim at estimating the discretization er­

ror. These ones are certainly the most commonly used in AMR-based 

calculations performed in the RANS and DNS frameworks. 

The simplest idea consists of looking at the gradients of the solution, 

which are large in regions relative to strong and rapid variations of the 

solution and the occurrence of significant discretization errors. 

Another popular sensor is the one based on Richardson extrapolation 

[Berger and Oliger, 1984], which consists in comparing predictions of 

the solution at several grid levels with different resolution. This com­

parison provides an estimate of the local truncation error. 

While these classical sensors are known to yield reliable estimates of 

the discretization error, they result in too important grid refinements 

within the framework of LES. As a mater of fact, a fully turbulent 

field is characterized by a chaotic behavior of the flow and strong local 

variations of the solution. The Richardson extrapolation being based 

on an asymptotic error estimate, it is only valid in the DNS limit. 

4We recall that in the particular LES context, the projection error cannot be con­
trolled, since the resolved field depends explicitly on the characteristic resolution length 
hr. 
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(2) The sensors which aim to detect the existence of unresolved scales. 
The previous sensors do generally not account for any subgrid infor­
mation. Indeed, if the solution varies sufficiently smoothly, some high-
frequency phenomena - still not resolved by the current mesh - may 
remain unresolved, and escape the previous sensors. Let us consider 
the grid-resolved velocity field u. A possible way to estimate the sub-
grid fluctuations u ' of the flow relies on the following self-similarity 
assumption: 

u' = u - u (6.12) 

~ u - S (6.13) 

where the hat notation denotes the application of a secondary test filter. 
A possible sensor consists in refining the grid in flow regions associated 
with values of u' larger than a user-defined threshold. 
It can be remarked that the use of a second-order finite difference ap­
proximation of the Gaussian filter with a cutoff length taken equal to 
2h leads to the following estimate of u' (the developments are carried 
out in one dimension of space only for a sake of clarity): 

u'(x)=u{x)-^{x) (6.14) 

= u(x) -

h2d2u 

u(x) - - (u(x - h) + 4u(x) + u(x + h)) (6.15) 

Ydx^ix)+°{h3) (6-16) 

<92u 
yielding u' ex ̂ - j - Note that this quantity corresponds also to a 

popular sensor in AMR simulations. 
Such a detection of the unresolved small scales of the flow may lead 
to an effective reduction of the projection error. However, in the LES 
context, the use of such a sensor may also lead to a too important 
degree of refinement, i.e. the mesh resolution tends toward the DNS 
limit, which is the direct consequence of the search for the minimization 
of the projection error. 

(3) The sensors which detect the flow regions where the modelling (resolu­
tion) error is important. As stated above, the refinement sensors based 
on some estimations of the numerical truncation error, or on the detec­
tion of unresolved subgrid scales lead to too crude criteria in the spe­
cific LES context, since they all lead to the use of prohibitive DNS-like 
grids. Therefore, it appears necessary to develop some specific refine-
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ment sensors for LES, which will be based on the analysis of the local 
physical features of the flow. Indeed, in LES, grid refinement should 
overcome only in some flow regions were the physical assumptions used 
to develop the subgrid models are not fulfilled. On the other hand, the 
subgrid models are generally very efficient in accounting for the unre­
solved scales in the flow regions where the turbulence at small scales 
is essentially isotropic. An appropriate sensor for LES should then be 
designed so that it will be able to detect unresolved scale anisotropy. 

Following this idea, Mitran [Mitran, 2001] combines the use of 
the Richardson extrapolation error estimate along with a combina­
tion of two physical sensors: the enstrophy jV x u|, and the helicity 
|(V x u) • uj. This physical sensor makes it possible to detect elon­
gated tubular structures, allowing the segregation between interesting 
subgrid dynamics and nearly isotropic subgrid turbulence. However, 
Mitran mentions that imposing some appropriate threshold values for 
the indicators remains an open flow-dependent problem. 

Another possible physical refinement indicator relies on the ap­
proach proposed by Leonard et al. [Leonard et al, 2005a; Leonard 
et al., 2005b]. This indicator is based on the computation of the slope 
of the energy spectrum in the highest resolved wavenumbers, therefore 
making it possible to detect the flow regions where the turbulence is not 
isotropic. The authors base their approach on a wavelet representation 
of the solution. 

First, the following wavelets coefficients are considered: 

/

+oo 
f(x)ijjmj(x)dx (6.17) 

-oo 

where the two indices m and j refer respectively to the scale (m = 0 
corresponds to the finest scale) and the position in space. The function 
/ may be chosen as a characteristic variable of the flow. 

The basis functions i/jm,j are obtained by dilatation and translation 
of a mother wavelet ip. The authors chose to use a redundant wavelet 
in their study: 

^m^x) = 2-^[~^j. (6.18) 

These wavelets correspond to larger and larger scales as m increases, 
i.e. their support increases with m. 
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The analysis of the wavelets coefficient wmj is therefore an efficient 

way to evaluate the local energy of each scale at each grid point. In 

practice, the finite-difference approximation developed by Sjogreen and 

Yee [Sjogreen and Yee, 2004] was retained by the authors to compute 

the wavelet coefficients5: 

«W = fT"1 " ( /"I 1 + /JTT1) /2 (6-19) 

where the representation of the function / at the level m is given by: 

/ f = (/J^1 + fT+'i1) /2- (6'2°) 

As first proposed by Sjogreen and Yee [Sjogreen and Yee, 2004], the 

authors then introduce the local Holder exponent6 OLJ to analyze the 

regularity of the function / , defined thanks to the following relation: 

log2 rmj = ajm + C (6-21) 

where C is a constant, and: 

rm,j = max \wmj+k\ • (6.22) 
fc=-2mp,2m(j ,J 

The two parameters p and q define the stencil of the wavelet decompo­

sition. 

By considering an appropriate function / to perform the wavelet 

analysis, the Holder exponent can be interpreted as a local evaluation 

of the slope of the Fourier energy spectrum 7 . Indeed, the authors con­

sidered the vorticiy field V x u, and, assuming a power law of the form 

E(K) OC K~P for the energy spectrum, derived the following relation: 

a0• = ^ . (6.23) 

The local Holder exponent therefore appears as a possible refinement 

sensor, the grid bing refined in flow regions such tha t (3 < 5 /3 . Equiv-

5 Here, only one-dimensional developments are detailed for a sake of clarity. The 
approach can be simply extended in the three space directions to derive the fully three-
dimensional method. 

6Relying on this quantity, Sjogreen and Yee [Sjogreen and Yee, 2004] use different 
families of wavelets to detect shocks, turbulent fluctuations, and spurious fluctuations. 

7 The link between wavelet coefficients and the Kolmogorov decaying law was studied 
by Farge et al. [Farge et al, 1996] and Perrier et al. [Perrier et al., 1995]. 
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alently, the refinement threshold is imposed naturally thanks to rela­
tion (6.23), and the grid may be refined in regions where small scales 
anisotropy is detected i.e.: 

2 
refine if: a>j < — . (6-24) 

As an illustration, Fig. 6.2 presents the fine-grid organization obtained 
dynamically by applying this refinement technique during a LES of a 
three-dimensional turbulent mixing layer, in the inviscid limit, and for 
a Mach number value of M = 0.2. 

Fig. 6.2 Dynamic grid organization obtained in the case of a subsonic turbulent mixing 
layer. Courtesy of S. Leonard, ONERA, France. 

6.2.2 The Dynamic MultiLevel (DML) method of Dubois, 
Jauberteau and Temam 

This section describes the main characteristics of the DML method devel­
oped by Dubois, Jauberteau and Temam. For a more detailed presentation, 
the reader can refer to [Dubois et at, 1999]. 
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6.2.2.1 Spectral multilevel decomposition 

The following developments are restricted to the fully periodic case8 , which 

makes it possible to consider a fully three-dimensional spectral approach. 

Let us consider the computational domain as a cube with a size of L\ in 

each space direction. The velocity field u can therefore be expressed thanks 

to the following Fourier expansion: 

u ( x , t ) = Y, u ( M ) e " t £ ' 1 ' x (6.25) 

KGTZI'3 

where KL1 = 2TTK/LI. This expansion is then t runcated at order N as: 

u ( i v ) ( x , t ) = J2 u ( M ) e " ^ i - x = P N u ( x , i ) (6.26) 
K£ SN 

where P/v denotes the projector on the modes K such tha t |K| < y i.e. on 

SN-

SN = Le Z3 /M < y,J = 1,2,3J. (6.27) 

In order to get a reliable representation of the flow variables, the pa­

rameter N is chosen such tha t N > ^ , i.e. scales down to the Kolmogorov 

dissipation scale r\ can be captured. In practice |KJV| = "J — 1 -51/̂ TJ | is 

found to be sufficient to consider expansion (6.26) as a DNS representation 

of the flow (nn is the wavenumber associated to Kolmogorov scale). 

Similarly to Eq. (6.26) a multiscale representation of u can be consid­

ered, by introducing a hierarchy of t runcat ion order NM < NM-I < ••• < 

Ni < NQ = N, which makes it possible to obtain coarser representations of 

u as Ni decreases (respectively as the level i increases): 

u ^ ( x , t ) = / V i u W ( x ) < ) 

= J2 u(M)e ,Kt l'x (6-28) 
re£ SJV,; 

where -FV. is the projector on the modes K such tha t |K| < 4r-. 

8 The DML method was originally developed for isotropic homogeneous turbulence 
simulation, and then extended to the case of bi-periodic channel flow, which will not be 
discussed here. 
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Notice that PJV4 is a projective filter i.e.: 

PNi2 (pNii u W ) = PNt2 u W , for iVi2 < Nh. (6.29) 

By introducing the operator QN
H : u —> Pjŷ  u — P ^ u, one obtains an 

expression for the intermediate scales (details) between two levels i2 and i\ 
(ii <i2,Ni2 <Nh)

g: 

Y, u(K,t)elK^. (6-31) 

The following decomposition of the DNS field u W is finally obtained 
(we recall that N = NQ): 

u W = u W + ^ , (6.32) 

The multilevel decomposition of the flow variables that will be considered 
below is illustrated by Fig. 6.3. 

6.2.2.2 Associated Navier-Stokes-based equations 

In their study, Dubois, Jauberteau and Temam consider a particular form 
of the Navier-Stokes equations, which is based on the use of the Leray-
Helmholtz decomposition. First, the Leray-Helmholtz projection operator 
VLH of the vector v is introduced : 

v = V<? + w (6.33) 

where w is such that V • w = 0 (so that it is a curl vector). This decompo­
sition is shown to be unique. 

9 I t should be remarked that, with the notations introduced in Chapter 2, we get: 

» 2 - l 

5<tt = E 5u(0- (6-3°) 
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E(K) 

KNi+l KNi KNM KN2 K Ni K N K 
< 

Fig. 6.3 Multilevel decomposition of the turbulent field in the DML approach. 

By applying the projector VLH • v —• w(v) to the Navier-Stokes equa­
tions10 (2.2), the following equation is derived for u ^ : 

9 u W 
dt 

+ B ( u W , u W ) = - ^ u W 

where A is the Stokes operator: 

and: 

Au = -VLH^VL 

B ( u , v ) =VLHV • ( u ® v ) . 

(6.34) 

(6.35) 

(6.36) 

It is worth noting that the projection onto a divergence-free space makes 
the pressure term to disappear. 

By applying the scale separation operator PN. to Eq. (6.34), and con­
sidering the decomposition (6.32), the following evolution equation for the 
large-scale field u ^ ^ is obtained: 

dt 
PNiB ( u W ) , u<"'>) = _ ^ u W ) - P w ^ m f (uW,6u%. 

(6.37) 

10Here, since u ( N ) is associated to a DNS-like discretization, no subgrid term appears 
in the Navier-Stokes-based equations written for u W . 
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where Bint is the non-linear interaction term between large and small scales, 

which is classically split into a cross term and a Reynolds term: 

Bint(uW,5u»t) 

6.2.2.3 Quasi-static approximation 

In 2D, the theoretical works of Foias et al. [Foias et al., 1988] lead to the 

following inequalities, for sufficiently large values of Ni(< N): 

(6.39) 

(6.40) 

(6.41) 
2 

where |.|2 and |.| denote respectively the norms associated to kinetic energy 

and enstrophy. 

In 3D, numerical results [Dubois et al., 1998; Dubois and Jauber teau, 

1998] indicate tha t relation (6.39) is valid for Kp?i > KJ, and tha t relations 

(6.40) and (6.41) are valid for Kjy. > K,£, where Kg is the wavenumber 

associated to the maximum of the enstrophy spectrum. 

Some estimations of the t ime variation of the small scales, Jj<5uj^., and 

of the time variation of the non-linear interaction term between the large 

and the small scales, ^ B j n t ( u(Ni', <5ujy I, were also obtained, showing 

tha t their norms decrease as KTV4 increases. 

The global idea of the dynamic multiresolution methods was then de­

rived from these estimations. It consists in neglecting the variations asso­

ciated to these terms during a certain interval of time. This approximation 

is referred to as the quasi-static approximation. 

On the basis of the above estimations, the possible duration of this 

approximation is therefore expected to increase with JVj. 

5 u ^ , ^ + B W „ u ^ 

B(SU^,SUN 

Cross term ( o g ) 

Ni 

Reynolds term 

I a N \0" U ' J V . J 2 ^ u 
(Ni. 

<5u N I 
Ni | < ANi. 

9 X N < l n W ' 
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6.2.2.4 General description of the spectral multilevel method 

Dubois et al. developed several multilevel methods relying on the quasi-
static approximation, which are based on the use of a V-cycling strategy 
between the different computational levels. A hierarchy of M + 1 differ­
ent representation levels of the solution is introduced, with, as previously, 
NM < NM-i < ... < Ni < N0 = N. It is recalled that the finest level is 
associated to a DNS-like resolution. The approach may then be considered 
as a dynamic multilevel DNS method. 

For each cycle (one cycle may consists in several V-cycles), three pa­
rameters are introduced: two levels i\ and i^ (with 0 < i\ < %2 < M) 
associated to the coarsest and finest resolution levels during the current 
cycle (7Vj2 < N^), respectively , and ny which represents the number of 
V-cycles to be performed between the resolution levels i\ and ii within 
the current cycle. These parameters are derived from error estimates, as 
detailed in the next section. 

During each cycle, the resolution level i varies between iy and 12, and 
the Navier-Stokes-based equations (6.37) at this level are re-written using 
the following triple decomposition of u ^ ' = u^N°': 

(") {Hi) 

In this decomposition, the first term (i) is associated to the large scales 
which resolved at level i. The second one (ii) is related to intermediate 
scales, i.e. to scales which are not resolved at level i, but which are resolved 
at the finer levels j considered during the current cycle i\ < j < i. Finally, 
term (Hi) is associated to the small scales resolved only at levels I that are 
finer than the finest level of the current cycle, 0 < I < i\. 

At level i, the evolution equation (6.37) for u ^ ' ^ can be rewritten as: 

^ - +PNiB ( u ^ ) , uW>) = -vAuW 

- PNiBint (u^\6u^+6u%°i). 
'(6.43) 

This equation is solved at each level, using the quasi-static approximation. 

In practice, the non-linear interaction term is computed using the last com-
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puted values of the intermediate scales (details) SuN
n during the current 

cycle, and the value of the small scales <5u^° computed at the end of the 

previous cycle. At the end of each cycle, these small scales are refreshed by 

projecting them onto an approximate inertial manifold (see [Foias et al, 

1988] for instance), and the cycling parameters i\, 12, and ny are adapted 

according to one of the methods detailed in the next section. 

6.2.2.5 Dynamic estimation of the parameters i\, %i and ny 

Several methods have been proposed to adapt dynamically the cycling pa­

rameters in time: 

• In the first version of the algorithm [Dubois et al, 1990], the truncation 

order associated with the coarsest resolution level considered for the 

current cycle, Ni2, was defined by comparing the kinetic energy of 

the large and small scales U W ; and \S\1N. L, respectively. The 

finest resolution level t runcation order N^ was obtained by comparing 

0.u(Ni, and \§-tSu^ 
at 

In a later version [Dubois et al, 1993], the definition of the coarsest 

level (22) has been modified and based on the comparison of |<5u$. I 

with the accuracy of the numerical scheme used for time integration. 

While the two first versions use an arbi t rary value of the number of V-

cycles ny, a modification was performed in [Dubois and Temam, 1993] 

to give an estimate of this parameter using the viscous relaxation t ime 

at the finest level i\. 

In [Debussche et al., 1995], the truncation order at the coarsest level, 

Ni2, is defined by comparing the enstrophy contained at large and 

small scales, i.e. T T W ) and M u $ . , respectively. The finest level 

was defined by comparison of the large and small scales kinetic energy, 
r C i ) and \Su% I . 

2 ' z 

Thanks to these possible methods, some 2D simulations were conducted 

(simple analytical flows and 2D isotropic turbulence were considered). In 

order to perform three-dimensional computations (homogeneous isotropic 

turbulence), Dubois and coworkers derive in [Dubois et al, 1998] and 

[Dubois and Jauber teau, 1998] an improved version of the algorithm, in 

which the determination of the cycling parameters is based on the control 

of the errors due to the quasi-static approximation. 

file:///S/1n
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In [Dubois et al., 1998], some useful error estimates were provided. 
Let us consider one cycle of the algorithm, which consists in riy V-cycles 
between the two levels i\ and 12, during a time interval [ti,t2], with 
i2 = t\+ 2{i2 — i\)nv At, where t\ is time at the beginning of the cycle and 
At denotes the timestep. 

At every level i G [11,22], the error induced on the large scales u^ " by 
the use the quasi-static approximation of the non-linear interaction terms 
(/) and (//) is shown to be smaller than e^ 

ei 2 ( « 2 - •ii)nvAt max 
te[t i ;«2] dt 

PNiBint iW(t)M%' 
(6.44) 

The error done on the intermediate scales Su*,*1 is smaller than €2-

e2 = ( 2 ( i - i i ) + 1) At max 
t£[ti;t2] 

d 
Su Ntl 

dt v—^ 
(t) + <5u^(t)) (6.45) 

Finally, the err >'committed on the small scales SuN° by projection on an 
approximate inertial manifold is smaller than 63: 

e3 = 2(i2 ii)At max 
*S[ti;t2] 

d_ 

dt" 
6<l (*) (6.46) 

It can be remarked that error terms £2 and £3 are of first order in time. The 
maximum errors done on the large and intermediate scales, e\ and e2, are 
shown to decrease as i decreases, i.e. the error decreases for finer levels. 

On the basis of these estimates, the authors propose the following dy­
namic procedure to estimate the parameters i±, i2 and ny: 

(1) The maximum targeted error on kinetic energy is evaluated as £fc 

where er denotes a non-dimensional parameter associated 

to the relative error on kinetic energy. 

(2) The coarser resolution level i2 is chosen to be the coarsest level i 6 
[1,M] such that it minimizes the error on the scales associated with 

Su N
2, kept frozen during on timestep: 

\^-SuN I 
I dtouNi | 2 

> To/2At (6.47) 

where T0I2 is a user-defined tolerance parameter11. 

In their studies, the authors recommend to use some values of the order of unity for 
T0I2. In practice, they use T0I2 — 1 or 2. 
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(3) The finest resolution level i\ is then chosen to be the finest level i E 

[l,i2 — 2] (at least three levels are considered in one cycle) such tha t 

the error on the small scales is minimal, i.e. such tha t , according to 

(6.46): 

I a / * • > 2(i2 - i)TohAt (6.48) 

where Tol\ is another tolerance parameter (~ 1 or 2). This condition 

accounts for the fact tha t at level i\, the small scales are kept frozen 

during 2(i2 — i\) t imesteps. 

(4) The coarse resolution level %2 is modified if necessary, in order to con­

sider only a (user-defined) maximum number of resolution levels during 

the cycle: 

• ii = max(i 2 ,« i + Aievei) (6.49) 

where A;ei,e; is in practice taken around five. 

(5) The number of V-cycles to be performed in the global cycle is estimated 

to minimize the error on the largest scales, using (6.44) as: 

ny 
2{i2~i1)At2 iPjvJSB»f n ( ^ ) , < 

(6.50) 

Thanks to this dynamic evaluation of the parameters i\, i2 and ny, the 

cycling algorithm described in Sec. 6.2.2.4 can then be applied. 

Dubois, Jauber teau and Temam applied their approach to the simula­

tion of 2D analytical flows (see for instance [Dubois et al., 1990]). In [Dubois 

et al, 1993] and [Debussche et al, 1995], the case of 2D isotropic homo­

geneous turbulence was considered, and then 3D calculations of isotropic 

homogeneous turbulence were carried out in [Dubois et al., 1998], with a 

grid resolution varying between 643 and 2563 in this last case. The ex­

tension of the method to the bi-periodic plane channel flow is discussed in 

[Dubois et al, 1999]. 

6.2 .3 Dynamic Global Multilevel LES 

This method is a particular case of the global multilevel LES method de­

veloped by Terracol et al. [Terracol et al., 2001; Terracol et at, 2003] which 

has already been presented in Sec. 5.4.2, and in which the integration t ime 

devoted to the resolved scales at a given level was an arbitrary parameter . 

In order to increase the efficiency of the method when dealing with strongly 
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unsteady flows, the authors derived an improved, dynamic version of the 
algorithm. This temporal self-adaptive procedure has been designed in or­
der to control the time variation of the frozen details at a given level and to 
ensure that it will remain lower than a given arbitrary threshold when in­
tegrating on some coarser levels. This threshold has to be chosen such that 
the time variation of the details can be considered as negligible. While the 
original developments were carried out in the case of compressible flows, the 
incompressible formalism will be presented below. In practice, the thresh­
old parameter emax is defined at each resolution level n as the maximum 
acceptable value for the relative time variation of the kinetic energy12 of 
the small scales associated with the wavenumber range [/c„+i; Kn]. 

At the beginning of each V-cycle of the algorithm, the self-adaptive 
procedure provides an estimation of the number of integration levels, and 
of the integration time that can be used at each level. It consists of three 
main steps: 

(1) The time TQS during which the quasi-static approximation will remain 
valid at the finest representation level is first estimated : 

< emax (6.51) 

where || . ||2 is the £2-norm, and k1-71^ is the kinetic energy of the re­
solved field at level n: 

fcWzr-uW^uW. (6.52) 

Finally, Sk^n> = kSn> — k(-n+1> denotes the kinetic energy associated to 
the scales in the wavenumber range [KU+I\ Kn]. 
The maximum time of validity of the quasi-static approximation at the 
finest level is obtained from relation (6.51): 

(6.53) 
2 

To compute the time derivative in Eq. (6.53), the authors use a simple 
backward Euler formula. Given the value of TQS, the maximum number 
of levels N that can be considered is estimated such that at least one 
time step will be performed at each coarse level (the time step Atn at 

T, Q8 
dt 

Sk^1 fed 

TQS kW 
dt 

6k^ 

12In the compressible case, the total energy (including the pressure contribution) was 
utilized. 
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level n is estimated so tha t the CFL number is constant at each level). 

The following relation has therefore to be satisfied: 

JV 

$ ^ A t j < T < QS- (6.54) 
i=2 

Assuming a constant aspect ratio r in each space direction for two 

successive grid levels, the time step at each level n > 2 is Atn = 

r " - 2 A i 2 - This yields: 

yy'-2) < TBI. 
1=2 

A i 2 

(6.55) 

This relation finally leads to: 

TQS 
r ( i v - D < ( r _ 1 ) i ^ + 1 

A<2 
(6.56) 

This relation is satisfied by taking the following value for the maxi­

mum 1 3 number of levels N: 

N = 1+1 
\og{{r-l)TQS/M2 + l)) 

log(r) 
(6.57) 

where I denotes the integer par t . 

(2) The second step is then to derive the values of the integration times 

ATn at each level, which may consist in several t ime steps Atn. This 

is performed in order to ensure the validity of the quasi-static approx­

imation. For any level n > 1, it is therefore imposed tha t the t ime 

variation of the smallest resolved scales at level n — 1 remains negligi­

ble during t ime integration on levels / > n. This condition is enforced 

by the following relation: 

N 

£AT, 
d_ 

5k^n-^ fc(n-l) 
<€r. (6.58) 

13As highlighted by the authors, in practice it is necessary to limit the value of N 
to avoid the use of too coarse grids on which it would not look realistic to perform a 
numerical simulation. 
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This relation leads to the definition of the following upper triangular 
system with unknowns ATn,n = 2..N: 

N 

£AT, fc<" / 
\l=n 

8k{ n-1 ) ,n = 2..N. (6.59) 

This system can be solved in a trivial way. However, it is not ensured 
that all the values of the integration times obtained with this procedure 
are positive. 

The following procedure was then proposed by the authors to avoid 
negative values of the integration times to be obtained: the system 
(6.59) is first solved recursively from n = N to n = 2. If at a given 
level I a negative value of AT; occurs, then the integration time at the 
coarsest grid level N is reduced by one time step: ATN <— ATJV — Atpf. 
If the resulting value of ATN is negative, then the maximum number 
of levels is also reduced: N <— N — 1. The resolution process is then 
started again from level N — 1 to level 2. At the end of this resolution 
process, the values of ATn,n = 2..N are finally not necessary some 
solutions of the system (6.59), but the inequality (6.58) is satisfied, 
with strictly positive values for the integration time at each level. 

(3) Finally, the number of time steps to be performed at each level is simply 
computed as: 

N. 
(n) AT» 

Atn 
(6.60) 

If the value obtained at a given level n is equal to zero, it is reseted to 
one, and the time step at this level is then set to ATn. 

The only arbitrary parameter involved in the method is the threshold tmax. 
Numerical experiments show that the influence of this parameter is quite 
large. Typical alues for this parameter range from 10~5 to 10~2, emax = 
10~3 yielding satisfactory results in almost all considered flows. 

As an illustration, Figs. 6.4 and 6.5 display results obtained in a plane 
channel flow, for a value of the skin-friction Reynolds number of ReT = 590. 
For the multilevel simulations reported here (up to three grid levels were 
considered), the generalized multilevel model described in Sec. 5.4.2.2 is 
used on the coarse levels, while the dynamic Smagorinsky model is retained 
at the finest level. Two values of the threshold parameter emax have been 
considered, 1 x 10~4 and 5 x 10~4, respectively. The results are compared 
to the DNS data of Moser et al. [Moser et a/., 1999], to some fine monolevel 
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LES results obtained with the dynamic Smagorinsky model, and to those 
obtained with a three-level simulation using an imposed integration time 
of one time step at each level (ATn = Atn). It is observed that the use 
of the dynamic cycling strategy leads to some result which are in very 
good agreement with fine rnonolevel results. As was also highlighted by 
the authors, the results are in this case better than those obtained with the 
imposed cycling procedure, while a higher saving in CPU time14 is obtained 
with emax = 5 x 10 - 4 , thus indicating a better repartition of the integration 
times at each level. 

Fig. 6.4 Mean streamwise velocity profiles for the plane channel flow simulations at 
ReT = 590. Open circles: DNS (Moser et al, 1999); Filled circles: fine rnonolevel LES 
(dynamic Smagorinsky model); Dashed line: three-level simulation with ATn = Atn; 
Solid line: two-level simulation with emax = 1 x 10~4 ; Dash-dotted line: three-level 
simulation with tmax = 5 X 10~4 . From [Terracol, Sagaut and Basdevant, 2003] with 
permission of Elsevier. 

6.3 Adaptive Wavelet-based Methods: CVS, SCALES 

Adaptive wavelet bases have recently been used to build Navier-Stokes 
solvers. These methods appear as natural candidates for the design of self-

14 A CPU gain factor of more than five in comparison with the fine rnonolevel LES was 
reported in that case. 



196 Multiscale and Multiresolution Approaches in Turbulence 

Fig. 6.5 Resolved turbulent kinetic energy profiles for the plane channel flow simulations 
at ReT = 590. Open circles: DNS (Moser et al., 1999); Filled circles: fine monolevel LES 
(dynamic Smagorinsky model); Dashed line: three-level simulation with AT„ = A t n ; 
Solid line: two-level simulation with emax = 1 x 10~4 ; Dash-dotted line: three-level 
simulation with e m a a ; = 5 X 10 4 . From [Terracol, Sagaut and Basdevant, 2003] with 
permission of Elsevier. 

adaptive multilevel techniques. The most advanced ones for turbulence 
direct and large eddy simulation are discussed in this section. 

6.3.1 Wavelet decomposition: brief reminder 

Wavelet are basis functions of particular interest within the multiresolution 
framework, since they are localized in both the physical and wave num­
ber spaces. A solution field u defined in a n-dimension space is formally 
decomposed as 

+ o o 2 " - l 

u(x) = ^cM(x)+]r]r Y. o r w (^) 
leL0 j=0 m = l k€K.m<i 

where 0?(x) and i/)™J(x) are n-dimensional scaling functions and wavelets 
of different families (loop over m) and levels of resolution (loop over j ) , 
respectively. Coefficients of the projection are c° and d™J, while /Cmj ' 
denotes the set of all degrees of freedom. Scaling function coefficients c° are 
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related to the averaged values of u, while the wavelet coefficients represent 
the details of the field at different level of resolution. By definition, wavelet 
functions have a zero mean. 

There are several families of wavelets, whose details will not be recalled 
here. The interested reader is referred to [Mallat, 1997] for an extensive 
presentation. Let us recall that most advanced results dealing with tur­
bulence simulation have been obtained using second generation wavelets 
[Sweldens, 1998; Vasilyev and Bowman, 2000], which are well suited to deal 
with complex geometries and arbitrary boundary conditions. 

Considering that the turbulent solution is composed of both coherent 
and random fluctuations, it is natural to separate them. The wavelet de­
composition makes this operation very easy. Following Donoho [Donoho, 
1994], the wavelet de-noising procedure consists in setting to zero wavelet 
coefficient that are below an arbitrary threshold, e. This non-linear, 
solution-dependent procedure is proved to be optimal to eliminate Gaus­
sian white noise. The de-noised or coherent part of u, referred to as u>, is 
expressed as 

+ c o 2 " - l 

u>(x)=$>?#(x) + £ £ £ C>r J W. (6.62) 
leL0 j-0 ro=l k£K,m'j 

ICJl>c 

The incoherent part is of course defined as u< = (u — u>). This co­
herent/incoherent splitting of the solution does not a priori correspond to 
the classical decomposition between large and small scales, since coherent 
(resp. incoherent) motion is observed at all scales. This fact is illustrated in 
Fig. 6.6 which displays the turbulent kinetic energy spectra of the velocity 
fields associated to different wavelet levels. 

An interesting property is that each scaling function coefficient and each 
wavelet coefficient is uniquely associated with a single grid point (indices I 
and A;). As a consequence, the wavelet thresholding operation is equivalent 
to selecting "active" grid nodes for the simulation. 

Discarding small scales has several consequences: it is proved to violate 
the divergence-free constraint on the velocity field, and it yields a recon­
struction error which varies linearly with respect to the threshold e for 
sufficiently smooth field: 
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Fig. 6.6 Turbulent kinetic energy spectra of velocity field in isotropic turbulence (com­
puted on a 2563 grid). Solid line: full energy spectrum, dashed line without symbol: 
energy spectrum of the velocity field at wavelet level 1; solid line with circle: level 2; dot­
ted line without symbol: level 3; solid line with squares: Level 4; dash-dot line: Level 5; 
solid line with diamonds: Level 6. From [Goldstein and Vasilyev, 2004] with permission 
of American Institute of Physics. 

| | u - u > | | < C e (6.63) 

where C is a constant of order unity. 

6.3.2 Coherency diagram of a turbulent field 

6.3.2.1 Introduction to the coherency diagram 

We now address the way the wavelet decomposition can be used to obtain 

a significant gain in terms of computational effort. As mentioned above, 

basic wavelet de-noising aims at separating coherent and incoherent motion, 

without any direct link with scale separation. Crossing wavelet thresholding 

and scale separation Vasilyev and coworkers [Goldstein and Vasilyev, 2004; 

De Stefano, Goldstein and Vasilyev, 2005; Goldstein, 2004] introduced the 



Unsteady Turbulence Simulation on Self-adaptive Grids 199 

Coherency Diagram of turbulent field, which is displayed in Fig. 6.7. It 
illustrates the fact that all possibilities arise in a turbulent field: coherent/ 
incoherent motion occurs at resolved/unresolved scales. 

Resolved 

I 
I 

<" *̂> Unresolved 

Coherent 

A 

V 
Incoherent 

Increasing wave number H M ^ 

Fig. 6.7 Coherency diagram of a turbulent flow, showing the double decomposition 
according to the scale (as in usual Large-eddy Simulation) and the coherency (as inter­
preted from the wavelet threshold). 

Usual simulation techniques are illustrated in Fig. 6.8, and are not sen­
sitive to the coherent/incoherent character of the fluctuations, since both 
parts are simulated. 

Let us now discuss some observed properties of the removed field using 
the wavelet thresholding. 

(1) Setting e = 0 leads to a static wavelet basis, in which all degrees of 
freedom are kept active, leading to a full cost direct numerical simula­
tion. Since all degrees of freedom are used, all scales are resolved, and 
the closure issue is not relevant. 

(2) Setting the threshold to an "optimal" value e = eopt (discussed in 
Sec. 6.3.2.2) leads to an almost perfect split of the solution between 
the coherent motion and its Gaussian noise component. Unresolved 
motion is nearly purely Gaussian. The closure problem will consist in 
modeling the interactions between the resolved scales and a background 
white noise. 
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VLES LES DNS 

Coherent 

A 

V 
Incoherent 

Increasing wave number ^ M ^ 

Fig. 6.8 Coherency diagram of usual simulation techniques which do not account for 
the coherency. All scales are considered, even if they correspond to incoherent, nearly 
Gaussian motion. 

(3) Setting e > eQpt yields a higher cost reduction since more wavelet coef­

ficients are discarded, but the unresolved motion now includes a part 

of the coherent motion, in the sense tha t it is not a pure white noise 

anymore. The closure problem is a priori different from the previous 

one, since the nature of the unresolved motion has changed. 

On the grounds of these considerations, several types of simulations can 

be distinguished, which are listed in Table 6.1. Corresponding coherency 

diagrams are displayed in Fig. 6.9. Pure Direct Numerical Simulation will 

not be discussed, since it does not imply any specific problem. 

Table 6.1 Different types of adaptive wavelet-based simulation techniques. 

Technique name threshold value Section 
DNS 

Wavelet D N S 

Coherent Vortex Stimulation 

Stochastic Coherent Adaptive Large Eddy Simulation 

e = 0 

0 < e < eo p t 

e ~ eopt 

£ > Copt 

not discussed 

6.3.3 

6.3.4 

6.3.5 



Unsteady Turbulence Simulation on Self-adaptive Grids 201 

SCALES 

Increasing wave number 

Fig. 6.9 Coherency diagram of adaptive-wavelet based simulation techniques which do 
not explicitly account for a cutoff wave number. 

6.3.2.2 Threshold value and error control 

The last important point is the evaluation of the optimal threshold eopt. 
The question is twofold: on which variable should the wavelet decomposi­
tion be applied? And what is the thresholding value? Farge and cowork­
ers [Farge, Schneider and Kevlahan, 1999; Farge, Pellegrino and Schnei­
der, 2001; Farge et al, 2003] apply the wavelet decomposition to the vor-
ticity field, and set eopt equal to the variance of the full instantaneous 
field in isotropic turbulence. This criterion approximates the theoreti­
cal criterion which says that the threshold value is equal to the variance 
of the Gaussian white noise component, which is not known in practi­
cal cases. Still considering isotropic turbulence, Vasilyev and coworkers 
[Goldstein and Vasilyev, 2004; De Stefano, Goldstein and Vasilyev, 2005; 
Goldstein, 2004] propose to decompose the velocity field and to chose eopt 

so that the projection error norm Eirn(hr,\) = \\u - Uh\\M wiU be mini­
mized while guarantying a significant data compression, where \\u - UH\\M 
is defined as the Loo-error scaled by the standard deviation a between the 
probability density function (pdf) of the subgrid field and a Gaussian pdf 
with the same mean variance: 
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| |u - uh\\M = c r l |pdf(u<) - pdf (Gaussian)||oo (6.64) 

Here, u^ is represented by the computed coherent field u> while inco­

herent part of the (unknown) exact solution is replaced by the ideal random 

Gaussian noise. 

The authors observed using direct numerical simulation da ta tha t the 

optimal value of the threshold yields a 90 % compression when the filter 

is applied to the vorticity field (i.e. only the higher 10 % of the wavelet 

decomposition coefficients are kept active) and a 99.5 % compression when 

the velocity field is considered. The difference in the da ta compression 

originates in the fact tha t the vortical events are more coherent than the 

velocity fluctuations. Therefore, WDNS and DNS methods can be inter­

preted as dynamic basis methods based on a priori error estimate, the error 

being defined by Eq. (6.64). 

Analyses conducted in [De Stefano, Goldstein and Vasilyev, 2005; 

Goldstein and Vasilyev, 2004] show tha t net average effect of unresolved 

scales on resolved ones in isotropic turbulence is a net drain of energy. This 

is consistent with the physical picture tha t the main dynamic mechanism is 

the forward kinetic energy cascade from large toward small scales, and tha t 

the randomness of small scales is higher than that of the large ones. This in­

creasing chaotic character at higher wave numbers was coined by McComb 

as the local chaos hypothesis and used to define a scale separation operator 

in [Mc Comb, Hunter and Johnston, 2001]. A fine analysis also reveals tha t 

the net drain effect is mostly due to coherent unresolved motion, since the 

mean energetic effect of a Gaussian white noise is theoretically null. But 

is is important to note tha t this does not mean tha t incoherent motion 

has no energy exchanges with coherent events: it just means tha t the net 

balance is zero. This result is the cornerstone of the modelling strategies 

used in the different simulation techniques presented below. It also enables 

another interpretation of the WDNS and CVS methods: since the subgrid 

net energy transfer is zero, the resolved kinetic energy equation in WDNS 

and CVS is exact. More precisely, the resolution error Evir(hr,X) associ­

ated with the resolved kinetic energy equation is null, the projection error 

and the discretization being still present. The choice of eo p t in WDNS and 

CVS can therefore be reinterpreted as an a priori control on the resolution 

error on resolved kinetic energy. 

Analyzing kinetic energy transfers rather than the pdf of the subgrid 

field, Vasilyev and coworkers [Goldstein and Vasilyev, 2004; De Stefano, 
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Goldstein and Vasilyev, 2005; Goldstein, 2004] found that the optimal da ta 

compression on the velocity field is 95% (in place of the 99.5 % given above). 

This lower value is to be preferred to get a more robust control on the error 

committed on the kinetic energy. The probability density function of the 

subgrid dissipation in isotropic turbulence computed from SCALES with a 

95% compression factor is shown in Fig. 6.10. It is observed tha t 99.5 % 

of the total subgrid dissipation is due to 5 % of the subgrid modes, which 

are the coherent part of the subgrid motion. 

PDF : -TijSij SCALES {21267 resolved modes) 
V X / / / 1 Mean/e = 0.552 

>Q<&88a Mean/a = 0.118 

SCALES, Coherent SGS (5%) 
\S//A Mean/e = 0.549 
W / / a/e = 4.709 

Mean/a = 0.117 

JOOO 4000 2000 0 2000 4000 6000 

SCALES, Incoherent SGS (95%) 
VN[/ / / | Mean/e = 0.00321 

a/e = 0.390 
Mean/a = 0.00823 

Fig. 6.10 SCALES subgrid scale dissipation in isotropic turbulence: probability den­
sity functions of the subgrid dissipation is decomposed into its coherent and incoherent 
components for a compression factor equal to 95%. From [Goldstein and Vasilyev, 2004] 
with permission of American Institute of Physics. 

6.3 .3 Adaptive Wavelet based Direct Numerical Simulation 

Adaptive wavelet DNS is characterized by a very small threshold value 

compared with eopt- As a consequence, all discarded events are pure white 

noise and have a zero net mean energy exchange with the resolved modes. 

As a consequence, unresolved modes are neglected and no model is intro­

duced to account for them. The reconstruction error is assumed to very 

small. Nevertheless, a significant gain in terms of computational cost with 

respect with DNS on static grid can be obtained, depending on the flow 

under consideration. 
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6.3.4 Coherent Vortex Capturing method 

The CVS method, proposed by Farge, Schneider and coworkers [Farge, 
Schneider and Kevlahan, 1999; Farge, Pellegrino and Schneider, 2001; Farge 
et al., 2003; Schneider et al, 2005], is defined by e = eopt. Unresolved 
motion is therefore a random white noise, without mean kinetic exchange 
with the resolved modes. As in classical large-eddy simulation, it is assumed 
here that energy transfers are of primary importance to describe intermodal 
turbulent dynamics, and that interactions which do not lead to a net energy 
exchange can be neglected. As a consequence, no model is introduced in 
the CVS method for the unresolved scales. This is illustrated looking at 
the governing equations for CVS. Using the vorticity transport equation as 
a starting point 

——I- u • Vw = w • Vu + i>V2iv, LU = V x u (6.65) 

and applying the wavelet filter discussed above, one obtains the following 
equation for the coherent vorticity field 

—j- + u> • Vw> = w> • Vu> + VV2UJ> + Tcvs (6.66) 

where the pseudo subgrid forcing term is defined as 

Tcvs = (u> • Vw> - (u • Vw)>) + ((w • V u ) > - w> • Vu>) . (6.67) 

The governing equations of the CVS method are obtained neglecting 
rcvs in Eq. (6.66). Efficiency and accuracy of the CVS approach is assessed 
comparing it to the traditional Direct Numerical Simulation approach. Such 
a comparison is provided in Fig. 6.11 which displays a comparison between 
the instantaneous vorticity fields in a plane mixing layer flow. The fields are 
observed to be quasi-identical, showing the the basic assumption dealing 
with the possibility to neglect the subgrid term if the wavelet threshold is 
carefully chosen is correct. 

An important point which must be reminded is that the wavelet thresh­
olding technique and the usual LES low-pass filter yield very different re­
solved and subgrid fields. This difference is illustrated in Fig. 6.12, which 
presents the resolved and unresolved fields for LES and CVS in isotropic 
turbulence. It is observed that, in the CVS approach, the resolved field 
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contains (as expected) almost all coherent structures, while the subgrid 
motion is still coherent in the usual LES case. 

6.3.5 Stochastic Coherent Adaptive Large Eddy Simulation 

The last method discussed in this section is the SCALES method [Gold­
stein and Vasilyev, 2004; De Stefano, Goldstein and Vasilyev, 2005; 
Goldstein, 2004; Goldstein, Vasilyev and Kevlahan, 2004; Goldstein, Vasi­
lyev and Kevlahan, 2005], in which the threshold factor is taken larger than 
eopt. As mentioned above, the net energy exchange is significant since some 
coherent modes are filtered out and a model for the unresolved scales is 
now required to recover satisfactory results. 

The governing equations for the SCALES method are 

<9TT>e 

—— + V • (u> e ® u> £ ) = - V | i > £ + ^V 2 u > e - V • r > e (6.68) 

where <f> denotes the resolved part of the dummy variable 0 for the se­
lected value of the threshold e. The subgrid stress tensor is defined as 

r>e = \TW^L>e - u>e ® u>f (6.69) 

and is formally similar to the usual subgrid tensor, the scale separation 
operator being replaced by the wavelet filtering operator. 

Since the emphasis is put on the resolved kinetic energy balance, it 
is proposed in [Goldstein, 2004] to use a functional model defined as a 
generalized Smagorinsky model: 

r>£ = -2/ / s c a l e s S > e , 5 > e = 1 (Vu> £ + V T u > E ) (6.70) 

where the eddy viscosity is defined as 

Scales = Cse2\S>f~ |. (6.71) 

The quadratic scaling of ^scaies with respect to e was checked to be 
correct using DNS data base in isotropic turbulence for a field compression 
over the range of 78.5 % to 99.95 % in [Goldstein, 2004]. The constant Cs 

can be determined empirically or adjusted using a Germano-type dynamic 
procedure. 



206 Multiscale and Multiresolution Approaches in Turbulence 

The test filter introduced in the usual Germano identity is obtained 
within the adaptive wavelet framework by considering another wavelet filter 
with a larger threshold value. Using a twice larger threshold value, the 
subgrid tensor at the test filter level is 

r > 2 e ^ ^ > 2 e - ^ - > 2 e 
r > 2 e = u ® u - u > e ® u > e ' " " (6.72) 

and the Germano identity reads 

r>2e
 =T>€ + ( u > e ( 8 ) u > e - u > £ ®u>e ) . (6.73) 

This expression is straightforwardly deduced from Eq. (4.15), since the 
Germano identity is a general relation which does not depend upon specific 
features of the scale separation operator. Using exactly the same procedure 
as in usual large-eddy simulation, the dynamic constant is evaluated as 

c = *3 13 g ? 4 N 

MeMe v ; 

lvJ-i]lvli3 

with 

Me = 2e2\S>c\S>€> £ - 2 (2ef \S>2£\S>2\ (6.75) 

As in other implementations, the dynamic procedure must be regular­
ized to prevent numerical problems. All techniques developed within the 
usual large-eddy simulation framework can be used in a straightforward 
manner, including the scale-dependent Lagrangian procedure proposed by 
Meneveau (see Sec. 4.2.3). It is worth noting that almost all subgrid models 
derived within the traditional scale-separation framework can be extended 
within this new wavelet-based framework (e.g. [Hoffman, 2002]). 

The SCALES approach is illustrated in Fig. 6.13, which displays the 
results in decaying isotropic turbulence at a Taylor-scale-based Reynolds 
number equal to 72 with a dynamic Smagorinsky model. An excellent 
agreement with filtered DNS data is observed, assessing the efficiency of 
the method. 
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6.4 DNS and LES with Optimal A M R 

All methods presented above are based on a priori error estimates, i.e. on 
models of the error. Since these models are not exact, the robustness and 
the accuracy of the error control cannot be guaranteed and the efficiency 
of the method is case-dependent. To obtain a more robust error control, 
it is necessary to use an a posteriori error estimate, which will account for 
errors really committed during the simulation. 

The most mature technique within the DNS/LES framework is certainly 
the one developed by Hoffman [Hoffman and Johnson, 2004; Hoffman, 2003; 
Hoffman, 2004a; Hoffman, 2004b; Hoffman, 2005a; Hoffman, 2005b], which 
will be retained as generic example in this section. 

6.4.1 Error definition: surfacic versus volumic formulation 

Hoffman applies his technique to the computation of the mean aerodynamic 
forced exerted on a solid body. Therefore, the error estimate is directly tied 
to the goal of the simulation and the grid will be optimized to recover the 
best prediction of the drag (or the lift). It is important noting that the 
optimality is intrinsically related with a given error estimate: the best grid 
for drag computation is a priori not the optimal one for heat transfer or 
aeroacoustic sources predictions. 

The usual definition of the mean drag of an immerged solid body with 
boundary To over a time interval / = [0, T] is 

F(a(u, p)) = ~ J I {a-n)-4>dSdt (6.76) 

where <r(u,p), n and <fi are respectively the stress tensor, normal outward 
unit vector to the body surface and the vector along which the aerodynamic 
force is to be computed. This expression is localized on the solid boundary, 
and is not well suited for the definition of an optimal control strategy since it 
permits to compute the drag or the lift but not to track the sources of errors 
into the flow. It must therefore be replaced by another formulation, which 
will make it possible to estimate the role of each control cell within the 
computational domain to the error committed on the aerodynamic forces. 
Such a formulation must therefore appear as a volumic integral. 

Before describing this new formulation, let us emphasize the fact that 
the very powerful idea used here is that the grid will be refined in regions 
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of the flow where the error arises, which are not necessarily the places 

where the error is observed. This point is illustrated considering the plane 

mixing layer flow, which is known to behave as a noise amplifier, due 

to its mean flow properties, all perturbat ions are amplified as they are 

advected downstream (see Fig. 6.f4). Therefore, a small error committed 

at the upstream location A will result in a large error at the downstream 

location B. A local error estimate at point B will lead to a grid refinement 

in the vicinity of B, resulting in a small error reduction, while a non-local 

a posteriori error estimate will make it possible to "kill" the error source 

by refining the grid around A, leading to a much more significant error 

reduction. 

Multiplying the momentum equation by a test function <& and integrat­

ing by part , Hoffman derives the following Galerkin-type formulation for 

the drag of a surface-mounted obstacle in a channel flow 

F(a(u,p)) = 1 f ((u + V • (u ® u) , * ) + (p, V • *> 

+ 2 i / ( S ( u ) , S ( $ ) ) + ( V - u , e » d t (6.77) 

where u = §f, S (u) = | ( V u + V T u ) and 

(u ,v ) = f u ( x ) v ( x ) d V (6.78) 
Jo. 

where fl denotes the full computational domain occupied by the fluid. The 

function <& extends the function qt> and is defined in the whole domain Q, 

and 0 is another test function introduced to get an accurate control on the 

incompressibility constraint. It must be noted tha t , for the sake of simplic­

ity, boundary terms arising from solid boundaries of the channel have been 

neglected. This is achieved taking $ = 0 on these boundaries. The relation 

(6.77) is writ ten using the exact solution field (u,p). Now considering the 

discrete computed solution (u.h,Ph), one obtains the following formula for 

the drag prediction 

Fh{a{uh,ph)) = - ((ufc + V - ( u h ® u h ) , * ) + ( p h , V - # ) 

+ 2 i / ( S ( u h ) , S ( * ) ) + ( V - u h ) e ) 

+ SGS{h,uh,Ph,&,Q))dt (6.79) 
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where the additional term SGS(h,uh,ph,$>,0) accounts for the contribu­
tion of the subgrid model, if any.15 The volumic error of drag (or lift, 
depending on the definition of <f>) to be minimized will therefore be defined 
as 

Err(/ir, A) = \F(a(u,p)) - Fh(a(uh,ph))\. (6.80) 

6.4.2 A posteriori error estimation and optimization loop 

The next step of the method consists in deriving an a posteriori estimate 
from Eq. (6.80). Since the exact solution (u,p) is not available, another 
formulation must be found. This is done introducing the following linearized 
dual problem, whose solution is {4>, 9): 

-^ - u • V0 = V0 + vV2<f> - Vu h • 4> (6.81) 

V-<^ = 0. (6.82) 

This linear problem is a convection-diffusion-reaction problem where 
the convection by the exact velocity field u acts backward in time. The 
approximated discrete computed solution is noted ((/>h,0h)- It is obtained 
in practice replacing u by its computed approximation u^ and solving the 
resulting equation. After some algebraic manipulations, one obtains the 
following new expression for the drag error: 

\F(a(u,p)) - Fh(a(uh,ph))\ 
i= l , N i=l,N 

.83) 

where N is the number of cell in the computational domain. The control-
cell localized discretization error Err/j(i) and resolution error Err r(i) are 
denned within the ith cell as 

1 5It is worth noting that if the Implicit LES approach is used, this term is related to 
a specific part of the numerical error tied to a dissipative/regularizing operator such as 
an artificial viscosity term. 
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Err^ 'O = | f ({uh + V • {uh ® u f t) , (cf>h - $ ) ) , + (ph, V • (</>h - *))< 

+ 2^ (5 (u„ ) , S(<^ - #)> + (V • u h ) (0h - &))t) dt (6.84) 

Err r(z) = i /" SGS(ft, uh,Ph, * , 6)<dt (6.85) 

where the indicae i denotes operator localized within the computational 

cell number i. Equations (6.84) and (6.85) provide a practical estimate 

for both discretization and modeling error in each cell. A very interest­

ing feature is tha t this method makes it possible to control them sepa­

rately. The modelling error can be analyzed more deeply. Recalling tha t 

SGS(/i, Uh,Ph, 3?, 0 ) t is associated to the weak form of the modelled subgrid 

term J"LES 

SGS(/i, uh,Ph, # , 6 ) i = (.FLEs, $ ) i (6.86) 

it is seen tha t taking (3>,Q) = (4>h,9h) in Eq. (6.85) one obtains an er­

ror estimate dealing with the subgrid force (in weak form), while taking 

( # , 0 ) = (uhiPh) o n e recovers an estimation on the error on the kinetic 

energy dissipation. These two choices obviously lead to different control 

strategies. 

Further refining the definition of SGS(/i, Uh,Ph, *> @)t also makes it pos­

sible to change the interpretation of the control problem. In the derivation 

of the error term given above, the target solution is the drag associated with 

the exact, full turbulent solution u, which includes all scales since no tur­

bulence model contribution appears in the exact drag definitions given by 

Eqs. (6.76) and (6.77). The optimal AMR algorithm will therefore converge 

toward the DNS solution, and the projection error E r r n is also decreased. 

It is possible to change the target solution and to define it as the ideal fil­

tered solution, i.e. as the LES solution with an exact subgrid model. This 

is done redefining SGS(ft, uh,ph, <&, 6 ) j as follows: 

SGS(ft, uh,Ph, * , S)i = (V • r L E S - ^ L E S , * ) i 

= (TLES, S ( * ) ) i - < ^ L E S , *>4 (6.87) 
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where boundary terms have been neglected and TLES is the exact subgrid 

tensor. This quanti ty is not available in practice, and Hoffman uses a 

subgrid model with very high correlation coefficient with the t rue subgrid 

tensor in place of it. In this case, the projection error is neither taken into 

account and will nor be reduced. 

The Optimal Adaptive Mesh Refinement DNS/LES algorithm can be 

writ ten as follows 

(1) Solve Navier-Stokes equation (primal problem) in Q over the t ime in­

terval / and store the unsteady solution (u^,,p^) over this interval. 

(2) Solve the linear dual problem (6.81) over il x I using the stored values 

of (uh,Ph) to get ((t>h,0h)- Compute the errors Err /^i) and Er r r ( i ) on 

the fly. 

(3) If | XIi=i N Err^(z) + X)i=i N Err r (z) | < e, where e is an arbi trary error 
threshold, then stop. Else: 

(4) Refine the grid in a fraction of cell with largest Err^(i) + Er r r ( i ) and 

go to (1). 

6.4 .3 Numerical results 

Hoffman's optimal AMR-LES technique is illustrated considering the in­

compressible flow around a cylinder at a cylinder-diamaeter-based Reynolds 

number equal to 3900. The simulation is carried out following the Implicit 

Large-Eddy Simulation technique using a stabilized finite element method, 

in which the stabilization term plays the role of the subgrid model. The 

topology of the flow is illustrated in Fig. 6.15 which displays the instan­

taneous positive streamwise vorticity isosurfaces. The three-dimensional 

character of the turbulent flow is remarked. The final adapted grid for 

cylinder drag computation is displayed in Fig. 6.16. It is worth noting 

tha t the grid is not refined homogeneously within the boundary layer at 

the cylinder surface, showing tha t the optimal grid may be very different 

from usual computational grids on this configuration. The effect of the 

grid refinement on the computed drag coefficient is shown in Fig. 6.17. It 

is observed tha t a converged value is reached after a few grid optimization 

steps. The evolution of bo th error components as function of grid evolu­

tion is plotted in Fig. 6.18. It is worth noting tha t the discretization error 

overwhelms the modelling error after the second grid refinement step. 



Multiscale and Multiresolution Approaches in Turbulence 

H*S 

Fig. 6.11 Comparison between DNS (top) and CVS (bottom). Iso-surfaces of the vor­

ticity modulus colored by the spanwise vorticity at t 
2005] with permission of Cambridge University Press. 

18 From [Schneider et at, 
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Fig. 6.12 Resolved/unresolved field decomposition in isotropic turbulence. Top: full 
instantaneous field. Bottom: left: resolved field, right: unresolved field, top: CVS, 
bottom: LES. From [Farge et al., 2003] with permission of American Institute of Physics. 
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Fig. 6.13 Energy spectra in decaying isotropic turbulence for SCALES with dynamic 
Smagorinsky model (dashed line) at time t=0.08 (left) and t=0.16 (right). For compar­
ison the DNS (solid line) and the filtered DNS (circles) are shown. A K ~ 5 / 3 straight 
dashed black line is shown to indicate the inertial range. From [Goldstein, Vasilyev and 
Kevlahan, 2004] with permission of American Institute of Physics. 

Point A Point B 

Fig. 6.14 Schematic view of the error growth in a plane mixing layer flow. The error 
committed at point A is amplified as it is advected downstream toward point B. The 
computational grid in the vicinity of A and B is illustrated. 
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Fig. 6.15 Large-eddy simulation of the flow around a circular cylinder using an opti­
mal AMR technique: instantaneous positive streamwise vorticity surface. Courtesy of J. 
Hoffman, Chalmers University, Sweden. 

Fig. 6.16 Large-eddy simulation of the flow around a circular cylinder using an optimal 
AMR technique: views of the final optimized grid. Courtesy of J. Hoffman, Chalmers 
University, Sweden. 
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Fig. 6.17 Large-eddy simulation of the flow around a circular cylinder using an optimal 
AMR technique: drag coefficient as a function of the number of mesh points (loglO). 
Two different ways to compute the drag are considered: with (no symbol) or without 
(symbol) the contribution from the stabilization term coming from the finite element 
method. It is observed that the converged values of the drag are the same, but that 
the first estimation yields better predictions on coarse grids. Courtesy of J. Hoffman, 
Chalmers University, Sweden. 
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Fig. 6.18 Large-eddy simulation of the flow around a circular cylinder using an optimal 
AMR technique: error estimates on the drag coefficient as function of the number of 
grid points (loglO). Crosses: modeling/stabilization error; Circles: discretization error. 
Courtesy of J. Hoffman, Chalmers University, Sweden. 



This page is intentionally left blankThis page is intentionally left blank



Chapter 7 

Global Hybrid RANS/LES Methods 

This chapter is devoted to hybrid strategies tha t merge RANS and LES 

approaches. Non-zonal approaches like "universal methods" which are 

able to switch automatically from one method to the other one result in 

a change in terms of frequency and wave numbers resolutions - arc fully 

discussed in the following sections. 

7.1 B r i d g i n g b e t w e e n H y b r i d R A N S / L E S M e t h o d s a n d 
M u l t i s c a l e M e t h o d s 

All hybrid RANS/LES methods described below are fundamentally defined 

as a merging between a RANS-type eddy-viscosity model and a LES-type 

subgrid viscosity model. We analyze here this approach with the purpose 

of identifying the scale-separation operator associated with these hybrid 

methods, and we show tha t they can be recast within the framework of 

multiscale models. 

7.1.1 Concept: the effective filter 

Most global hybrid RANS/LES methods are defined in a semi-heuristic 

way without any reference to a corresponding generalized scale separation 

operator tha t will give an explicit definition of both resolved and unresolved 

scales. 

To give a meaningful insight into the hybrid RANS/LES approach, it is 

necessary to identify the way unresolved scales are filtered out in practical 

simulations. An important remark is that , in almost all published works, no 

explicit scale separation operator is applied to the computed solution during 

the simulation. Therefore, all the information related to the theoretical 

219 
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scale separation operator (convolution filter, statistical average) is carried 
by the model used to account for the unresolved scales. 

Let us introduce the following non-linear conservation law 

| ± + V - F ( u , u ) = 0 (7.1) 

to discuss the properties of the scale separation operator which are really 
applied to the exact solution in practical simulations of turbulent flows. 
Here, u is the exact solution and F(-, •) is a non-linear flux. Let us now 
consider the governing equations for the large scales (i.e. the governing 
averaged or filtered equations): 

^ + V • F(u, u) = (F(u, U) - F ( ^ u j ) (7.2) 

rtrue 

where the resolved part of the solution is denned as 

u = ^ ( u ) (7.3) 

with T an arbitrary scale separation operator (see Chapter 2). Let us now 
write the practical problem, i.e. the one which is solved on the computer, 
like follows 

-^+V-F(uh,uh)=--M(uh) (7.4) 

where u/j and M. are the computed solution and the turbulence/subgrid 
model used, respectively. 

The important fact here is that the computed solution, u^, is solution of 
the theoretical governing equation (7.2) if and only if the model is exact1: 
M(uh) = Ttrue- Since this condition is never satisfied, one can easily see 
that 

u h ^ u = .F(u). (7.5) 

As a consequence, T is not the relevant scale separation operator to 
define u^. 

1 The numerical errors are not taken into account here for the sake of clarity. 
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Therefore, the problem arises of finding the scale separation operator Q 

such that 

(f(5,u)-i(^)) =M(uh), u = G(u). (7.6) 

Since it is the filter really experienced by the computed solution, Q is 

referred to as the effective filter. Identifying the effective filter is a complex 

inverse problem, and there is no theoretical evidence tha t it is well-behaved 

from a mathematical point of view. Since the effective filter is intrinsically 

tied to the turbulence model M. and tha t practical turbulence models do 

not perform equally well on different flow families, it is expected tha t the 

definition of Q will be both model- and flow-dependent. 

7.1.2 Eddy viscosity effective filter 

Magnient [Magnient et ai, 2001b; Magnient, 2001a] carried out the anal­

ysis of the effective filter associated with several subgrid viscosity models 

in the case of isotropic turbulence in the limit of vanishing molecular vis­

cosity. The strategy adopted here was to identify the transfer function of 

the effective filter by looking at the resolved energy spectrum. It is worth 

noting tha t such a procedure provides us with an approximate evaluation of 

the effective filter, since it relies on the energy spectrum only. It is possible 

to develop a similar identification procedure using higher-order statistical 

moments or probability density functions. 

It is first recalled that , in the case where a sharp cutoff filter with 

cutoff length A is considered, the filtered solution exhibits an inertial range 

obeying the Kolmogorov -5 /3 law for the energy spectrum up to the cutoff 

wavenumber K = ir/A: 

E(K) = KQe2'ZK-b'\ (7.7) 

This spectrum shape is recovered if the subgrid model is such tha t the 

resolved kinetic energy balance is correctly enforced, meaning tha t both the 

global amount of energy transfer toward unresolved scales and the scale 

distribution of this energy drain are enforced in a proper way. This is 

for example the case when using the Smagorinsky subgrid viscosity model, 

which is defined as 
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vt = (CsA)2\S\ (7.8) 

where Cs is an arbitrary constant. The kinetic energy drain experienced by 

the resolved motion due to the non-linear interactions with subgrid scales 

is 

£ = u-M = (CsA)2\S\3. (7.9) 

This last relation shows tha t , setting the subgrid model constant Cs to 

the appropriate value, one can enforce in the simulation the same kinetic 

energy drain as the theoretical one. In the case of the sharp cutoff filter 

in the limit of vanishing molecular viscosity, one obtains Cg — 0.18, and 

numerical experiments show tha t the expected kinetic energy spectrum is 

recovered using this value2 . Equat ion (7.8) also reveals tha t by changing Cs 

one can enforce an arbi t rary length scale in the subgrid model, resulting in 

a change in the energy dissipation, and therefore leading to a new resolved 

kinetic energy spectrum shape. 

Defining the effective filter as the application which transforms the the­

oretical kinetic energy spectrum into the computed one, one can easily 

see tha t changing the subgrid length scale (and consequently the subgrid 

dissipation), one modifies the effective filter. These changes have been an­

alyzed for two subgrid models, namely the Smagorinsky model and the 

one-equation on kinetic energy proposed by Schumann [Magnient et at, 

2001b]. It is recalled tha t , in the Schumann model, the subgrid viscosity is 

defined as 

vt = {CsA)Vk (7.10) 

where k is the subgrid kinetic energy. 

Magnient and coworkers show tha t both the cutoff length and the math­

ematical form of the effective filter depend on the length scale which appears 

in the eddy viscosity and the subgrid viscosity definition: 

(1) Taking the usual empirical value of the constant of both models 

(Smagorinsky model and Schumann model), an inertial range with a 

- 5 /3 slope is recovered up to the cutoff wave number associated with the 

2In practice, the Kolmogorov spectrum is recovered if the numerical method does not 
introduce spurious energy dissipation and if A = 2Ax, where Ax is the mesh size. 
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Nyquist wave number of the computational mesh. In terms of effective 
filter, this can be analyzed interpreting the effective filter as a sharp 
cutoff filter with a cutoff wave number equal to kc = TT/A: 

m \ f 1 x < 1 & i * •,-,*> 
0W = \0 otherwise' x = V' ^ 

(2) Taking higher values of the constants appearing in the eddy viscosity 
models, i.e. multiplying Cs in Eqs. (7.10) and (7.8) by a factor r > 1, 
one observes very different behaviors: 

Q(x) = i^^-") * - . (7.12) 
n otherwise 

for the Smagorinsky model, and 

e 2 1° r ) X < 1 

U otherwise 

for the Schumann model. 

Therefore, tuning the constant in the subgrid viscosity models induces 
a change in both the cutoff length and the mathematical expression of 
the filter. As a consequence, RANS/LES models which are based on a 
local change in characteristic length scales in the definition of the turbu­
lent viscosity also induce a change in the local effective filter, leading to a 
local change in the resolution of the solution and the definition of a multi-
scale/multiresolution approach. 

7.1.3 Global hybrid RANS/LES methods as multiscale 
methods 

Since hybrid RANS/LES models rely on the merging of different turbulent 
viscosities with different built-in characteristic scales, switching from one 
definition to another one or interpolating between the two values is therefore 
equivalent to switching from one effective filter to another one or to defining 
a new effective scale separation operator. This change in the built-in scales 
of the model for the unresolved scales being performed locally in space, 
the global hybrid methods can therefore be interpreted as multiresolution 
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methods, in which the resolution in terms of wave number is increased in 

regions with low eddy-viscosity levels and decreased in regions with high 

viscosity levels. Global hybrid RANS/LES methods have therefore aroused 

the turbulence modelling community interest as discussed in the following 

sections. 

7.2 M o t i v a t i o n and Class i f icat ion of R A N S / L E S M e t h o d s 

During the last decades, most of the numerical efforts in the field of applied 

aerodynamics have been focused on the simulation of nominal operational 

configurations. As a consequence of the rules of design, most practical con­

figurations exhibit only limited separated flow areas and smooth gradients 

regions. Therefore, steady methodologies for turbulent flow prediction are 

able to handle these flowfields with a sufficient degree of accuracy. New 

industrial needs in aerodynamics concern for example the control of noise 

as well as the capability to predict dynamic loads so that the simulation 

of 3D unsteady turbulent flows is now required (see discussions by Spalart 

and Bogue [Spalart and Bogue, 2003], Deck et al. [Deck et at, 2005]). In­

deed, this need is becoming an especially pressing issue since a wide range 

of unsteady phenomena tha t have serious implications in terms of achiev­

able performance, acoustic environment or safety has to be considered, and 

therefore requires to be accurately predicted as soon as possible in the de­

sign cycle of flight vehicles or cars (see Fig. 7.1). 

Direct Numerical Simulations (DNS) are the most straightforward ap­

proaches to the solution of unsteady turbulent flows since the governing 

equations are discretized directly and solved numerically. One can obtain 

an accurate three-dimensional and time-dependent description of the flow 

completely without resorting to any modelling assumptions. Unfortunately, 

turbulent flows encountered in engineering applications exhibit such a wide 

range of excited length and time scales (shock wave, boundary and free 

shear layers) at high Reynolds number ( « fO5 — 108) t ha t DNS are still 

beyond our capabilities (see the discussion on the resolution requirements 

for LES and DNS in Chapter 1). However, DNS are a very useful tool for 

the study of transitional and turbulent flow physics like the definition of 

spatial relations between flow variables or dynamics of turbulent eddies. 

More recently, DNS have also been used to study strategies to control tur­

bulence thanks to active or passive devices but are not a realistic possibility 

in most cases of practical importance. 
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Fig. 7.1 Turbulent structures and approximate acoustic sources computation on a car. 
External components such as the side-view mirror (upper-part), sun-roof (lower-part) 
directly excite the panels which transmit noise to the driver ears. Courtesy of D. Ricot, 
Renault, France. 

For these reasons, high Reynolds number separated flows have been 
traditionally predicted by solving the Unsteady Reynolds Averaged Navier 
Stokes (URANS) equations. This approach has experienced very different 
fortunes: URANS can give fairly good results in complex industrial geome­
tries like flows around airliners but can meet tremendous problems when 
applied to simple geometries exhibiting massive separation like a base flow. 
This comes mainly from the fact that dominant eddies in massively sepa­
rated flows are highly geometry-dependent and have not much in common 
with the standard eddies of the thin shear flows classical RANS turbulence 
models are designed to model. 
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On the other hand, the potential accuracy of LES is generally well-

acknowledged. In practical engineering problems, the high cost of LES 

arises because of the resolution required in the boundary layers which 

dramatically raises the range of scales beyond affordability. For instance, 

Spalart et al. [Spalart et al., 1997] reported as an estimate tha t for a wing, 

full LES will not be tractable until the year 2045, even assuming tha t wall 

modelling has been achieved. It is also worth remembering tha t from an 

engineering point of view, a LES of a complete wing would give too much 

information in some "useless" regions such as the leading edge or pressure 

side where traditional RANS modelling is often sufficient. 

The recognition of this conflict between RANS and LES makes it very 

appealing to combine the fine-tuned RANS modelling in the at tached 

boundary layers with the accuracy of LES in the separated regions. This 

motivation is supported by Germano's [Germano, 1999] analysis. His work 

is based on the fact tha t RANS and LES equations are formally identi­

cal but with fundamentally different characteristic length scales. Let us 

recall t ha t one of the earliest appearances of hybrid RANS/LES method 

is found in the seminal paper by Schumann [Schumann, 1975]. He devel­

oped a wall-model to supplement the SGS model in the near wall region. 

Little at tention was paid to the subject until the more recent papers of 

Spcziale [Speziale, 1997] and Spalart et al. [Spalart et al., 1997] which 

have definitively led to breakthrough of hybrid RANS/LES simulations 

in industrial applications. Inspired by them, the development of hybrid 

RANS/LES approaches has received increasing attention among turbu­

lence modelling specialists, CFD code developers and industrial CFD engi­

neers. Indeed, recent years have added new intermediate strategies, coined 

as "URANS", "TRRANS", "PANS", "SDM", "OES", "LNS", "VLES", 

"DES", "XLES", "SAS", "Blending methods", "zonal (and non-zonal) 

approaches", "RANS/LES coupling", "embedded LES". 

The purpose of this chapter is to help the reader to find a route through 

the jungle of publications covering both established and emerging ap­

proaches in the field of hybrid RANS/LES methods. Many of the methods 

discussed in this chapter are relatively new and the associated terminology 

is still evolving. The aforementioned strategies are compared in Fig. 7.2 in 

terms of their major capabilities (e.g. level of resolved physics), computa­

tional power requirement and readiness for industrial applications. 

The effect of grid refinement on the solution constitutes the first impor­

tan t criteria to categorize unsteady methods [Spalart, 2000a]. As a mat ter 

of fact, in some strategies (referred to as "Unsteady Statistical Approaches" 
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Fig. 7.2 Classification of unsteady approaches according to levels of modelling and 
readiness. 

in Fig. 7.2), grid refinement aims at numerical accuracy. In other words, 

"numerical" means tha t grid refinement does not add any new physics to 

the solution. This class of methods is discussed in Sec. 7.3. 

In contrast, in hybrid RANS/LES methods the aim of grid refinement is 

to enrich turbulence physics (labelled "physical" instead of "numerical"). 

Following the example of LES, grid refinement weakens the role of the 

modelled eddies, e.g. the smallest resolved eddies match the grid spacing3 . 

Hybrid methods can be, broadly speaking, categorized into two ma­

jor classes corresponding to global and zonal hybrid methods respectively. 

Global hybrid RANS/LES approach relies on a single set of model equations 

and a continuous t rea tment a t the R A N S / L E S interface. The decrease of 

eddy viscosity farther away from solid walls allows eddies to develop rapidly 

3Spalart [Spalart, 2000a] defined LES as a simulation in which the turbulence model 
is tuned to the grid spacing and RANS as the opposite. 
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but no turbulent fluctuations are reconstructed at the RANS/LES inter­
face. Therefore, this class of methods will also be referred to as "weak 
RANS/LES coupling" in the following and is discussed in Sec. 7.4. 

Conversely, zonal hybrid methods are based on a discontinuous treat­
ment at the RANS/LES interface where the LES content has to be explic­
itly reconstructed to account for the very large differences in the frequency 
spectrum between RANS and LES regions. This second strategy will be 
referred to as "strong RANS/LES coupling" and discussed separately in 
Chapter 8. 

The motivation behind these different approaches will be given and illus­
trated for generic and technical flows. A summary is presented in Sec. 7.5. 

7.3 Unsteady Statistical Modelling Approaches 

Nowadays, steady RANS (sometimes referred to as SRANS) methods are 
routinely used for engineering applications and will not be discussed here. 
The ever increasing computational power has shifted attention to the Un­
steady RANS (URANS) approaches which still constitutes the backbone for 
industry. Therefore the ability of this class of methods to handle unsteady 
flows is discussed in Sec. 7.3.1. The Semi-Deterministic Method (SDM) 
which aims at simulating the coherent motion is presented in Sec. 7.3.2. 

Afterwards, we distinguish between URANS and LES depending on 
wether the eddy viscosity is sensitized to a filter width or grid spacing A 
or not. In other words, modelled stresses in a RANS approach do not 
scale with the grid spacing as they do in LES. Unfortunately, the border 
between URANS and LES appears much less clear in the light of two recent 
proposals of Menter, Kuntz and Bender [Menter et ai, 2003] and Travin 
et al. [Travin et ai, 2004]. These authors offer intriguing alternatives to 
URANS solutions with LES-like behavior which are respectively presented 
in Sec. 7.3.3 and Sec. 7.3.4. 

7.3.1 Unsteady RANS approach 

The most commonly used approaches to predict unsteady turbulent flows of 
industrial interest are based on Reynolds stress modelling. We have seen in 
Chapter 2 that Reynolds averaging is based on the idea that the flow can be 
decomposed into a mean flow and fluctuations (see Eq. 2.8). To make the 
most of this notion when performing time-dependent RANS calculations, 
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we defined the scale separation operator as a time-average over a time 

interval T. This averaging t ime T has to be larger than the characteristic 

t ime scale of turbulence r and smaller than the characteristic period 8 for 

the time evolution of the mean properties. From a mathematical point of 

view, this amounts to say tha t we apply a low-pass filter to the turbulent 

field with i representing the cut-off frequency. 

Therefore, this URANS approach can be successfully used in cases where 

the flow is forced to be unsteady because of unsteady boundary conditions 

(such as body motion) e.g. in flowfield characterized by a separation of 

time scale (or spectral gap) between the unsteadiness of the mean field 

and turbulence. A typical example is given by a small-amplitude forced 

oscillation of a vehicle so tha t the flow remains fully at tached or slightly 

separated. This type of motion is used for the numerical (and experimental) 

prediction of the damping derivative coefficients (see Fig. 7.3). 

This URANS approach, sometimes referred (Hanjalic and Kenjeres 

[Hanjalic and Kenjeres, 2000]) to as TRANS (Transient-Reynolds-Averaged 

Navier-Stokes) can also yield interesting predictions for certain situations 

of unsteady separated flows when turbulence is not the driving phenomenon 

of flow instabilities. An example is provided by rotating stall which is gen­

erally the first instability encountered in multi-stage compressors, before 

surge. This three-dimensional phenomenon is characterized by one or more 

cells of stalled flow which rotate at a fraction of the rotor speed. URANS 

can give useful predictions for this complex phenomenon as recently showed 

by Gourdain et al. [Gourdain et at, 2005] (see Fig. 7.4). 

In the case of unsteady flows with a pronounced periodic character, the 

scale separation operator based on phase-averaging given by Eq. (2.31) can 

also be used. The resulting system of equations is sometimes named PANS 

which states for Phase-Averaged Navier-Stokes equations. The phase aver­

aging is theoretically grounded if pseudo-periodic components exist in the 

flow, for instance when boundary conditions impose flow unsteadiness. This 

situation arises for example in turbomachinery applications when ro tor / 

s tator interactions are taken into account or in flow around an helicopter 

blade. 

Nevertheless, we have already seen tha t the URANS and PANS systems 

are formally equivalent and from now on, we designate them to as unsteady 

statistical methods instead of distinguishing URANS and PANS. 

As an example, we consider tha t the flow around an helicopter blade 

is submitted to periodic forcing imposed by the the angular velocity of 

the rotor. The unsteady statistical approach is well-suited here since the 
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Fig. 7.3 URANS computation of a small amplitude forced oscillation. Top: time av­
eraged pressure coefficient and pressure fluctuation coefficient on airplane. The grid 
contains 8.106 nodes for a half-configuration and requested less than 20 CPU hours (on 
a single NEC-SX6 processor) to complete a loop. Bottom: Lift coefficient (solid line) 
and drag coefficient (dashed line) evolution. The need for unsteady computations for 
accurate predictions of the lift and drag coefficients is highlighted by the elliptic shape 
of these aerodynamic coefficient versus angle of attack. Indeed, a series of steady com­
putations allows only the linear curve to be obtained. Courtesy of V. Brunet, ONERA, 
France. 

flow is naturally forced to be unsteady due to the periodic motion imposed 
by the rotor and this forcing easily provides a phase locking of the flow. 
Renaud et al. [Renaud et al., 2005] performed an unsteady calculation using 
the k — LU turbulence model [Wilcox, 1988b] with SST correction [Menter, 
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Fig. 7.4 Entropy flow field during rotating stall. Note the different stall cells emanating 
between the blades and propagating in the whole compressor. The simulation was per­
formed on 4 processors of a NEC-SX6 super-computer on a Nxyz = 31 106 nodes grid. 
3800 CPU hours and 29.5 Giga-bytes of memory storage (by using the one-equation 
Spallart-Allmaras turbulence model) were necessary to simulate 15 revolutions of the 
rotor. Courtesy of N. Gourdain, ONERA, France. 

1994] around a complete helicopter configuration. A view of the body fitted 
grids around each blade of the four blades of the helicopter model and the 
background grid around the fuselage is presented Fig. 7.5. 

The unsteady approach is needed to perform a quantitative analysis of 
the unsteady pressure fluctuations generated by the blades passage on the 
tail boom (see Fig. 7.6). 

7.3.2 The Semi-Deterministic Method of Ha Minh 

Following the idea proposed by Reynolds and Hussain, in the form suggested 
by the experimental results of Cantwell and Coles, the Semi-Deterministic 
Method (SDM) of Ha Minh and Kourta [Ha Minh and Kourta, 1993] (see 
also [Ha Minh, 1999]) is based on the decomposition of physical variables 
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Fig. 7.5 Computational grid around a complete helicopter (every other grid point in all 
direction is shown). The total number of grid points has been limited to Nxyz = 9.1 x 106 

points using the Chimera technique to reproduce the motion of the blade. The CPU cost 
to simulate a rotor revolution was less than 140 hours on a single processor of a NEC-SX6 
super-computer. Courtesy of T. Renaud, ONERA, France. 

into a coherent and incoherent part.4 

/ = fcoherent + f (7-14) 

chaotic turbulence 

This approach can also be found in the literature under the appellation 
Organized Eddy Simulation (OES) since Braza [Braza, 2000] considers that 
in many situations, the flow is simultaneously organized (coherent motion) 
and chaotic (incoherent motion). The SDM approach consists in splitting 
the energy spectrum (see Fig. 7.7) into a discrete part regrouping all the 
organized modes or coherent modes of the flow (e.g. distinct frequency 
peaks of the spectrum) and a continuous part which corresponds to the 
chaotic or incoherent part of motion. 

The time averaging procedure is obviously not relevant in the extraction 
of the coherent motion. The coherent part of the spectrum is predictable 

4 The criterion of distinction of the structures to be predicted from those to be mod­
elled is their physical nature and not their size as in the case of LES. 
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Fig. 7.6 Instantaneous pressure distribution on the fuselage and blades. The Mach 
number characteristic to forward flight is equal to Moo = 0.044. The blade wake vorticity 
is plotted at the same instant in a radial section of the retreating side. Courtesy of T. 
Renaud, ONERA, France. 

by solving the phase-averaged Navier-Stokes equations (fcoherent — f + f 
where / is periodic) and the remaining incoherent part can be modelled 
by a conventional one-point RANS closure. The nature of the small-scale 
stochastic fluctuations is believed to be universal and similar to the tradi­
tional turbulence concept. Although, the form of the equations of motion is 
formally similar to the one obtained by considering the Unsteady Reynolds 
Averaged Navier Stokes (URANS) equations, the time and length scales of 
the turbulent part are not the same as in flows in statistical equilibrium. 
If we consider the energy spectrum of the flow at any point of the flow 
domain, it appears that the turbulent energy of the steady (RANS) closure 
(with / = / + / ) is the sum of the analogous one for phase-averaging SDM 
closure (with / = / + / + / ) with the energy of / . As a consequence, 
the SDM energy should be smaller than the RANS one, and corresponding 
turbulent viscosities should also satisfy this inequality. This constitutes the 
main difference with the classical URANS approach since in the framework 
of an SDM simulation, the turbulence model has to be modified to take 
into account the coherent (or organized) structures which are not modelled 
but resolved. 
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SEMI-DETERMINISTIC 
APPROACH 
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incoherent pari 

Fig. 7.7 Sketch of Spectrum decomposition according to the Semi-Deterministic 
Approach. 

For example, adopting the relation i/t — Cfl— used in a two-equation 

k — e turbulence model, Ha Minh proposed to reduce the values of CM, 

thus decreasing the eddy viscosity to build the SDM. For example, for the 

backward facing step case, he obtains as optimal value CM = 0.05. 

Bastin et al. [Bastin et al., 1997] used the SDM approach to investi­

gate plane mixing layers at convective Mach numbers 0.19, 0.33 and 0.52 

(i.e. quasi-incompressible cases and cases where compressibility effects are 

significant). They performed calculations with C^ taken equal to its stan­

dard 0.09 value and with CM = 0.05. They observed no apparent modifica­

tion of the coherent structure development and the mean flow is unchanged 

except tha t self-similarity is reached further downstream with CM = 0.05 

than for CM = 0.09. They have shown tha t decreasing CM essentially results 

in shifting the energy balance between coherent and incoherent motion, the 

energy of the coherent structures being increased. The authors finally re­

tained the value CM = 0.05. 

The OES approach has also been used to compute the unsteady flow 

around a NACA0012 profile at 20 degrees angle of attack. Braza [Braza, 

2000] showed the ability of the fe — e model to properly predict the highly 

separated flow and the vortex shedding mode in the wake by taking C^ = 
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0.02. This evaluation was made through a posteriori quantification of the 

turbulent energy and dissipation fields calculated with a Reynolds Stress 

Model (RSM). She deduced the C^ value by the classical relation vt = Cli^r 

by adopting a posteriori the Boussinesq relation. 

From the aforementioned applications, it is observed tha t firstly the 

value of {GIX)SDM lies in the range [0.02 — 0.05] and secondly tha t this 

value is applied in the whole flowfield even for at tached boundary layers. 

Indeed, the value of CM = 0.09 comes from scaling of flows in statistical 

equilibrium and plays a key role in determining the slope of the logarithmic 

law (see for example [Cousteix, 1989]) since the constants of the model 

Cei, CS2, ue and CM are linked to the von Karman constant K according to: 

# 2 (C£l~C£2)ae^U;' 

Therefore, Depres [Depres, 2003] used a "zonal-SDM" approach which 

consists in retaining the s tandard value C^ = 0.09 in at tached bound­

ary layers while separated flows are predicted by taking C^ = 0.02. This 

approach was then used to investigate an axisymmetric base flow extended 

by an emergence of lower diameter. Figure 7.8 displays an instanta­

neous snapshot of the coherent (or organized) structures obtained with this 

method. This picture clearly shows the roll-up of toroidal eddies which are 

progressively destabilized in the vicinity of the confluence area. After the 

break-up of these toroidal eddies, the main structures appear to be mainly 

longitudinal eddies. The spectrum of pressure fluctuations on the afterbody 

(see Fig. 7.9) displays a sharp peak at Strouhal number Sto = fD/U, 

based on the diameter of the main body and free-stream velocity, equal to 

0.2. Hence, the near wake flow is characterized by a global unsteadiness 

and the periodicity is a t t r ibuted to the periodicity of the large scale turbu­

lent structures. It can be noted from Fig. 7.9 tha t the coherent part of the 

motion is well reproduced by the SDM approach while the high frequency 

fluctuations (incoherent par t ) are not reproduced. However, the amplitude 

of the coherent motion tends to be overestimated. This feature has also 

been observed by Bastin et al. [Bastin et al., 1997]. 

These authors observed that the amplitude of the coherent structures, 

e.g. the ratio of the coherent fluctuation to the total turbulence level, de­

pends on the choice of the viscosity constant C^. Kour ta [Kourta, 1999] 

used a flow-dependent CM value based on the time scale ratio of the tur­

bulence to the phase averaged strain 77 and on the time scale ratio of the 
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turbulence to the phase averaged rotation £ as follows: 

c » c - « = 5 - 3 r ^ (7-16) 

with 

^ ^ T ' ? = ^ ^ , ^1 = 1-25, 7 1 = 0 . 9 (7.17) 
< e > < e > 

where S and $1 denote the magnitude of strain and vorticity, respectively. 
Kourta applied this method to simulate vortex shedding in solid rocket 
nozzles by solving the phase averaged Navier Stokes equations for axisym-
metric non-swirling flow. Here again, the frequency characteristic of the 
vortex shedding was well reproduced but the levels of pressure fluctuations 
associated to this phenomenon were overestimated. Kourta [Kourta, 1999] 
argued that this overestimation is partly due to the axisymmetry assump­
tion which seems inadequate in this case exhibiting coherent structures. 
Indeed, an axisymmetrical or two-dimensional computation accounts for 
the role of time but not for three-dimensional effects leading to an "over-
coherent" simulation since the vorticity has only one component normal to 
the computational plane. 

03x x D / U „ -10.00 -7.14 429 143 143 4.29 7 14 1000 

Fig. 7.8 Coherent structures over an axisymmetric afterbody using a Semi-
Deterministic Approach. Courtesy of D. Depres, ONERA, France. 

Within the SDM framework, grid refinement aims at improving the nu­
merical accuracy and does not add any new physics to the solution since 
the method is independent of any explicit filtering operation in the compu­
tational plane. In other words, there is no reason why an SDM calculation 
would require a finer grid than the one required for a grid converged RANS 
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Fig. 7.9 Pressure spectra on the rear body using a Semi-Deterrninistic Approach. Cour­
tesy of D. Depres, ONERA, France. 

calculation. As an example, Depres [Depres, 2003] performed an SDM 
simulation on a 800, 000 points grid whereas Deck and Gamier [Deck and 
Gamier, 2004] used a 5 million points grid to perform a zonal-DES (see 
Sec. 7.4.6) and a LES on the same configuration. Nevertheless, the effect 
of grid refinement in the framework of unsteady statistical approaches is 
far from being fully understood (see Sec. 7.3.3). 

The semi-deterministic approach can be considered as an hybrid 
approach as it combines "resolved" (or coherent) and "modelled" (or in­
coherent) Reynolds stresses. Nevertheless, it is important to outline that 
modelled stresses do not scale with the grid spacing as they do in LES. 
Therefore, the SDM (or OES) does not fall (according to our terminology 
introduced Sec. 7.2) into the category of RANS/LES approach. 

7.3.3 The Scale Adaptive Simulation 

Anticipating discussions developed in Sec. 7.4.4, let us say that DES relies 
on the comparison of the turbulent length-scale computed from the tur­
bulence model and the local grid spacing. The decrease of eddy viscosity 
allowing a LES-like resolution of the turbulence field is entirely supplied 
by the grid dependent destruction term in DES mode (see Eq. (7.69) or 
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Eq. (7.105)). Thus an alternative to standard DES, which avoids the ex­
plicit dependency in the RANS region is the Scale Adaptive Simulation 
(SAS) approach recently proposed by Menter, Kuntz and Bender [Menter 
et al., 2003]. 

Menter [Menter, 1997] showed that a destruction term for the eddy vis­
cosity can be formulated without any explicit dependency with respect to 
the distance to the wall dw. His model was originally derived in order to 
demonstrate the connection between one- and two-equation models and re­
lies on a single transport equation for the eddy viscosity. More precisely, the 
model is derived from the two-equation k — e model under the equilibrium 
assumption that the turbulent production Pk is equal to the dissipation rate 
e. Assuming further that the diffusion coefficients in the underlying k — e 
model are identical a^ = <je, the high-Reynolds number form of Menter's 
model (referred to as KE1E) reads as: 

Pvt _ 
~Pt ~ 

Production 

cmS + V. (-Vvt) - c2 f-^L.) (7.18) 

Diffusion Destruction 

where c\, c2 and a are modelling constants derived from those appearing in 
the underlying k — e model. What is important here is that the destruction 
term is based on the vonKdrmdn length scale, which acts as an integral 
length scale in boundary layer regions. For a simple boundary layer, the 
von Karman length scale, LVK is defined as: 

LVK = K 

du 
9y 

d2v 
dy2 

(7.19) 

where u is the velocity parallel to the wall and y is the wall-normal coor­
dinate. One can notice that Lvx/K is equal to the distance normal to the 
wall in the logarithmic layer region. It is worth noting that this expres­
sion for the dissipation length scale arises naturally in the derivation of a 
single model for the k - e eddy viscosity using equilibrium assumptions. 
For general multi-dimensional calculations, an invariant formulation can be 
given: 
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To avoid the singularity of j ^ - appearing in Eq. (7.18) in the case of a 
vanishing mean strain-rate, Menter et al. (2003) use the following invariant 
formulation of the von Karman length scale: 

duj SUJ 

dxj dxi 
d2u„ (7.21) LvK-SAS = K. 

\ <s " I 

dxf 

and propose the following modification of the KE1E model: 

LVK-SAS = max (LVK~SAS, CSASA.) 

with A = min (Ax, Ay, Az) CSAs = 0.6 (7.22) 

where CSAS is a model constant. The fraction of grid spacing CSASA is 
required as a tolerance5. Furthermore when assuming source-term equilib­
rium, one obtains the following form of the eddy viscosity in LES mode: 

^t = ^L2
vk_SASS. (7.24) 

It turns out that Lvk-sAS introduces a dynamical behavior into the model. 
The SAS formulation was initially based on a one-equation model and has 
since been extended to more advanced models. As an example, Menter and 
Ergorov [Menter and Egorov, 2004; Menter and Egorov, 2005] adapted the 
SAS concept to the k — u> model and simulated the flow around a cylinder 
for a Reynolds number based on the diameter equal to 3.6 x 106. Turbu­
lent structures down to the grid limit (similar to those typically observed 
in LES simulations) are clearly observed in the wake of the cylinder (see 
Fig. 7.10). However, the SAS model handles the attached boundary layer 
in RANS mode making it reminiscent to global hybrid RANS/LES models. 
More precisely, LVK automatically distinguishes stable and unstable flow 
regions. The concept was thus called Scale — Adaptive Simulation or SAS 
as the model adjusts automatically to the resolved field. 

ini t ial ly, to avoid the singularity caused by vanishing mean-strain rate, the destruc­
tion term was written as: 

C2 mm f M ,(wt)
2 (7.23) 

Menter et al. (2003) showed that this modification reduces the ability of the model 
to adjust the length scale to resolved turbulent eddies. Indeed, the term (Vi/t) c&n 

become very small since the diffusion term in the equation may produce small eddy 
viscosity gradients. 
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Turbulence length scale / cylinder diameter 

Fig. 7.10 Comparison of SST-URANS (top) and SST-SAS(bottom) solutions for cylin­
der in crossflow. The grid consists of 3.18 x 106 nodes. In LES regions, the turbulent 
structures break down to the grid size LvK ss A. Courtesy of F. Menter and Y. Egorov, 
ANSYS, Germany. 

According to our classification (see Sec. 7.2), SAS can be considered as 
a URANS model since no explicit filter or grid size dependence appears in 
the formulation (except as a numerical tolerance for LvK). Nevertheless, 
this method is capable of resolving turbulent structures in highly separated 
flows, e.g. in flows which rapidly develop strong instabilities. SAS obviously 
"feels" the grid but a deeper understanding of the role played by the grid 
spacing and the numerical differentiation is needed. 
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7.3.4 The Turbulence-Resolving RANS approach of 

Travin et al. 

The TRRANS model is based on a slight modification of the k — u model 

presented in Sec. 7.4.4.5 and can be formulated as a multiplier to the 

destruction term in the k equation: 

DTRRANS= { C ^ k ) ,FTRRANS (7.25) 

DRANS=£RANS 

with 

FTRRANS = max ( (- - ) , 1 . ) (7.26) 
y \^TRRANS*1/ J 

where S and fl are respectively the magnitudes of strain and vorticity. The 

only new constant of the model is CTRRANS which is larger than 1. 

Therefore, in thin shear layers (S w Q) as well as inside vortices 

(S < fl), the TRRANS model is identical to the original RANS model. 

In contrast, in strain-dominated flow regions where S 3> ft, it can be noted 

from Eq. (7.26) tha t the model increases the dissipation of k which in tu rn 

results in a drop of eddy viscosity. At this stage, it is worth remembering 

tha t decreasing the eddy viscosity levels does not necessarily lead to a LES 

behavior. 

The constant CTRRANS was calibrated on the basis of Comte-Bellot 

and Corrsin [Comte-Bellot and Corrsin, 1971] da ta dealing with the kinetic 

energy spectrum of Decaying Homogeneous Isotropic Turbulence. The nu­

merical procedure used to compute CTRRANS was the same as the one 

used by Shur et al. [Shur et al., 1999] and Strelets [Strelets, 2001] to deter­

mine the CUES constants of the SA and SST models. The selected value 

of CTRRANS = 1-25 provides the best fit of the spectral slope in the in-

ertial range near the cut-off wave number. It is particularly intriguing to 

note tha t their model yields a decay of energy following the "-5/3 law" up 

to the cut-off frequency. Up to now and to the author 's knowledge, this 

mechanism is still unknown. 

Travin et al. also simulated three other flows with TRRANS: a 

NACA0012 airfoil with a = 45 deg. angle of attack, a circular cylinder 

and a backward facing step. For instance, they compared on a same grid 

the turbulence resolving capabilities of URANS, DES and TRRANS based 

o n f c - w turbulence model on the NACA0012. Figure 7.12 shows tha t the 
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Fig. 7.11 Comparison of k — u> TRRANS predictions of the DHIT energy spectra with 
the experimental data. Courtesy of M. Strelets, NTS, Russia. 

M-SST, 3D RANS j 

-̂ S 
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0) (b) (C) ^ * " 

Fig. 7.12 NACA0012 airfoil at 45 deg. angle of attack. Swirl isosurfaces in the airfoil: 
a) k - LO SST 3D URANS (L - z = 4c) b) k - UJ SST-DES {L-z = c)c)k-w TRRANS 
(L — z = c). Courtesy of A. Travin, NTS, Russia. 

level of resolved structures is quite similar between TRRANS and DES and 
obviously superior to URANS. 

Similar conclusions were obtained on the flow around a circular cylinder. 
In addition, the response of TRRANS to grid refinement is of LES type e.g. 
smaller structures are resolved as the grid is refined. Therefore, Travin et al. 
named their model as a Turbulence Resolving Reynolds Averaged Navier-
Stokes (TRRANS) approach. On the other hand, TRRANS unlike DES 
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failed to support unsteadiness in the backward facing step flow which is 

generally a good candidate for hybrid RANS/LES methods. 

Conversely to DES (see Eq. (7.94)), the TRRANS modification is not 

sensitive to grid spacing and therefore preserves the RANS spirit of the 

model, making it reminiscent to SAS (see Sec. 7.3.3). The main difference 

is tha t TRRANS uses a non-dimensional ratio between first derivatives of 

the velocity fields whereas SAS derives the von Karman length scale, LVK 

from a ratio to first and second order derivatives (see Eq. (7.21)). 

In conclusion, the ability of TRRANS to act in a LES-like fashion in 

certain flow regions does therefore raise questions concerning the URANS 

concept as a whole. 

7.4 Globa l H y b r i d A p p r o a c h e s 

Most RANS models perform well for flows similar to the ones for which 

they are tuned like at tached boundary layers. However, it seems to be 

generally well-acknowledged tha t the accurate prediction of massive sepa­

ration is beyond the capabilities of "classical" URANS approaches. Never­

theless, massively separated flows are populated by large turbulent scales 

which can be accurately resolved by LES at affordable (CPU) cost, e.g., 

without a prohibitive the need for a grid resolution. Conversely, doing 

accurate predictions of wall-bounded flows with LES is still a challenging 

task. The primary obstacle to practical use of LES for realistic engineering 

flows which involve wall boundary-layers at high Reynolds number remains 

computational resources. Indeed, LES aims at capturing the scales of mo­

tion responsible for turbulence production which impose severe demands 

on the grid resolution near solid-walls. Hybrid RANS/LES was proposed 

to alleviate this grid resolution problem in the near-wall region. 

Global (or non-zonal) RANS/LES strategies rely on a single set of equa­

tions tha t blends into a generalized model RANS and LES models. This 

hybrid approach is expected to act in RANS mode near the wall and tran­

sition to LES where desired. Several hybrids proposals have been made, 

which are presented below: 

(1) Very Large Eddy Simulation (VLES) , see Sec. 7.4.1 

(2) Limited Numerical Scales (LNS), see Sec. 7.4.2 
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(3) Explicit blending of the RANS and LES methods, see Sec. 7.4.3 

(4) Detached Eddy Simulation (DES), see Sec. 7.4.4 

The continuous treatment or smooth transition between RANS and 
LES modes raises the important issue of "grey-area" where the model can­
not respond either as RANS or LES. This topic is discussed separately in 
Sec. 7.4.5 and some solutions to overcome this "grey-area" drawback are 
presented in Sec. 7.4.6. 

7.4.1 The Approach of Speziale 

Speziale [Speziale, 1997; Speziale, 1998] was an early contributor in the 
development of hybrid RANS/LES closures. In his approach, the turbulent 
stresses are computed by damping the Reynolds stresses in regions where 
the grid spacing, A, approaches the Kolmogorov length scale L^, that is: 

T = a . r R A N S (7.27) 

in which 

(7.28) 

where j3 and n are some modelling (unspecified) parameters, A some rep­
resentative mesh spacing (see Table 7.1)and L^ is the Kolmogorov length 
scale: 

3 

LK = ^ . (7.29) 
£4 

Speziale's approach allows us to merge the RANS and LES methodologies 
which are classically treated as separated approaches. Indeed, in the limit 
as — —• 0, all relevant scales are resolved, i.e. the subgrid scales vanish 
completely (e.g. r = 0) leading to a Direct Numerical Simulation. 

The regular RANS behavior is recovered (e.g. r = T
R A N S ) a t the other 

limit as — —> oo as the mesh becomes coarse or the Reynolds number 
becomes extremely large. Between these two limits, Speziale considers the 
simulation as a Very Large Eddy Simulation (VLES)6, that is an LES (the 

6 The acronym VLES has been used in the literature to refer to very different ap­
proaches going from URANS to LES. Indeed, following a conventional LES practice, the 
effect of the subgrid scale eddies is mainly to dissipate turbulent energy with negligible 
contribution to the Reynolds stresses. Hunt and Nixon [Hunt and Nixon, 1995] used the 
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eddy viscosity depending on the grid spacing A) , where the preponderance 

of the turbulent kinetic energy is unresolved. 

It can be noted tha t any trusted RANS model can be blended following 

this approach, although Speziale recommended the use of a two-equation 

RANS model with non-equilibrium effects incorporated via an explicit al­

gebraic stress model. 

However, a number of issues were never completely specified by Speziale, 

such as the definition of the crucial parameters (3 and n as well as the 

choice of the damping function given by Eq. (7.28). Further developments of 

Speziale's Kolmogorov length scale dependent blending have been pursued 

by several authors (see for instance [Sandberg and Fasel, 2004]). As an 

example, Zhang et al. [Zhang et al., 2000] conserved the ratio -£- to switch 

from RANS to LES mode via the contribution function: 

, - 5 m a x ( 0 , A - 2 L K ) 
1 — exp ' 

NL K 
(7.30) 

where n and N are user-defined constants (n = 1 in their s tudy). This 

function is slightly different from the original form proposed by Speziale (see 

Eq. (7.28) since the grid spacing is compared to N times the Kolmogorov 

length scale (N is taken in the range 1000-2000 in their wall-jet application). 

This approach has been named new Flow Simulation Methodology (FSM) 

by the authors but falls into the category of VLES introduced by Speziale. 

Other forms of the contribution function a and different choices of the 

length scale are given by Fasel et al. [Fasel et al, 2002]. 

At this stage, it is important to point out that properly reaching 

both the DNS and RANS limits does not guaranty that the correspond­

ing approach provides a correct LES mode. Since the original function 

proposed by Speziale compares grid spacing with the Kolmogorov scale, 

it reduces the RANS stresses significantly only in regions where the grid 

resolution approaches the one required for DNS. The knowledge of Kol-

mogorov's length scale is not strictly needed to ensure that the correct 

DNS behavior is reached in the limit of vanishing grid spacing and there are 

many possible choices of such blending functions (partly indicated by the 

acronym VLES to define a LES in which the cutoff is placed close into the inertial range, 
i.e. when a non-negligible part of the total kinetic energy is contained in the modelled 
scales. Although, such a simulation cannot resolve the full range of turbulent scales, it 
is able to resolve the "very large eddies" to account for their non-linear interaction with 
the mean flow. Nevertheless, Hunt and Nixon's work should be classified as LES and 
not as an hybrid RANS/LES method. 
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free modelling parameters in Eq. (7.28)). In addition, when the Reynolds 
number tends to infinity (i.e. LK —> 0, the model proposed by Speziale 
gives systematically a RANS behavior since r = r R A N S according to Eq. 
(7.28). In other words, the grid spacing has no influence anymore on the 
eddy viscosity and an LES subgrid scale can not be reached as fine as the 
grid is. Surprisingly, this feature received little attention in the literature. 
Therefore, Magnient [Magnient, 2001a] suggested an hybrid approach that 
not only depends on -£- but also on the ratio LR^NS where LRANS is a 
characteristic length scale, in a RANS sense, of the large structures. As­
suming LRANS ^ LK, Magnient postulates that the influence of both ratio 

^ a n d ^ 
of the hybrid eddy viscosity 
•jj- and 27-^— is statistically uncorrelated and suggests the following form 

LRANS J \^K , 

The contribution function g is similar to Speziale's function (see Eq. (7.28). 
In the framework of a Very Large Eddy Simulation, e.g. LK <S A, Magnient 
postulates g « 1 and chooses a k — e model to determine y^-ANS • 

k2 ( A \ fc§ 
vt oc — / , LRANS oc — (7.32) 

£ \LRANSJ £ 

In classical LES, one can show by simple dimensional analysis [Sagaut, 
2005] that the subgrid scale viscosity can be expressed as a function of the 
filter width and the dissipation rate of the resolved scales: 

f t < x A M . (7.33) 

Under the equilibrium assumption, the kinetic energy dissipation rate is 
constant and the following relation between a RANS and a LES model can 
be established: 

T V = ~h (T.34) 
A 3 r 3 

^RANS 

file:///LransJ


Global RANS/LES Methods 247 

yielding to7: 

\ _ AS 
/ 7 = — • (7:36) 

\LRANSJ L1ANS 

Finally, Magnient obtains the following expression of the eddy viscosity: 

l/t = C e A t e 3 , Ce = 0.0966 (7.37) 

where k and e are determined using a classical k — e RANS model. It is 
also worth remembering that Eq. (7.37) is not aimed at the treatment 
of wall bounded flows. He used the above model to simulate a temporal 
evolving mixing layer and observed that this new model derived from a 
k — e RANS model gives results similar to those obtained with classical 
LES. Magnient concluded that his approach is not fully satisfactory since 
the constants of the RANS turbulence model need to be recalibrated to 
perform a Very Large Eddy Simulation. This last remark has also been 
advocated for Semi-Deterministic or Organized Eddy Simulation (see Sec. 
7.3.2). 

7.4.2 Limited Numerical Scales (LNS) 

7.4.2.1 General idea of LNS 

A variant of VLES, LNS (Limited Numerical Scales) has been introduced by 
Batten et al. [Batten et al, 2000; Batten et al., 2002] as a mean of closure 
for Speziales's [Speziale, 1997; Speziale, 1998] approach (see Sec. 7.4.1). 
The LNS achieves this goal by re-defining Speziale's latency parameter a 
(see Eq. 7.28), with the following ratio of effective-viscosity norms: 

.[(LV) 
LES ' 

(LV) 
(LV) 

(7.38) 
RANS 

where (LV) is the length-scale/velocity scale product of some LES subgrid 
scale model, and (LV)RANS is the corresponding product for the given 

7A similar rescaling law for computing the subgrid viscosity was proposed by Za-
jaczkowski and Peltier [Zajaczkowsi and Peltier, 2001]. Following inertial range argu­
ments, they suggest computing the subgrid viscosity v/" from the RANS eddy viscosity 
vt

RANS as: 

»t
LES = f(^-)"tRANS with f(—*—)v™»S = ( _ ± _ \ \ ( 7 .3 5 ) vt 

\LRANS J 

file:///Lrans
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RANS model. The a parameter is envisioned to play a strong role in the 

blending strategy since the length scale/velocity scale product is a primary 

parameter tha t has strong influence on the eddy viscosity amplitude. It is 

also worthwhile to note from Eq. (7.38) tha t no additional closure coefficient 

is required. In the case where consistent models are assumed for both LES 

and RANS stress tensors, the latency factor simply selects the shear-stress 

of minimum magnitude. When fine grid regions are encountered by the 

LNS method, due to the scaling of the predicted Reynolds-stress tensor by 

a, the eddy viscosity is instantaneously decreased to the levels implied by 

the underlying sub-grid model. 

7.4.2.2 Example of application 

Any trusted RANS turbulence model can be combined with any pre-existing 

SGS model. As an example, assuming a linear Boussinesq closure, the def­

inition (7.38) implies tha t the eddy viscosity simply gets multiplied by a: 

Vt = avfANS , 0 < a < 1. (7.39) 

From Eq. (7.38), the latency parameter a can be expressed as: 

LES 
, 1 \ (7.40) 

VRANS _|_ £ 

where ujiANS and v^ES are respectively the RANS eddy viscosity and 

the SGS viscosity and e some small parameter , O (10~ 2 0 ) , to allow a —> 

0 without singularities in low Reynolds number regions. Note tha t the 

LNS formulation contains no additional (empirical) constant beyond those 

appearing in the baseline RANS and LES models. 

As an example, the "LNS hybridization" of a k — e turbulence model 

with the conventional Smagorinsky SGS model yields: 

a = mm<^ -f h e, 1 > . (7.41) 
I C» s J 

Batten et al. defined A as a measure for the local Nyquist grid wave­

length but other definitions gathered in Table 7.1 have been advocated by 

several authors (see for example Spalart et al. 1997, Bush and Mani 2001). 
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Table 7.1 Definitions of the filter width. At is the computational time step, |u | the 
fluid velocity relative to the mesh and k represents the turbulent kinetic energy. local 

Comments 

Ai = (AxAy, Az)3 classical filter width for LES 

A2 = max(Ax, Ay, Az) most widely used definition for global hybrids 

A3 = 2 max(Ax, Ay, Az) smallest wave length that can be supported 
at any orientation to the local mesh 

A4 = max (Ax, Ay, Az, |u| At) accounts for both space and time filtering 

A5 = max [ Ax, Ay, Az, |u| At, yfkAt J may be problematic since initial values for k 

can force permanent RANS behavior 
whatever the grid spacing and time step are 

7.4.3 Blending methods 

7.4.3.1 General idea of blending methods 

As already mentioned, Schumann [Schumann, 1975] was an early contribu­
tor in the development of hybrid models. He proposed a wall-model which 
relates linearly the mean shear stresses to the mean velocity component 
of the first-off-wall grid point. Nevertheless, Schumann's proposal applied 
only to the lower section of the boundary layer whereas global RANS/LES 
methods aim at treating the entire boundary layer with a RANS model. 

The blending approach was then revisited by Baggett [Baggett, 1998] 
who expressed the SGS tensor as a function of the subgrid scale viscosity 
VtES and the eddy viscosity V^-ANS provided by a RANS model: 

TH ~ \rkkk3 = - [(1 - T(y)) 4ES + T(y)vt
RANS] 5« (7.42) 

where F(y) is a blending function between the RANS and LES descriptions 
of the flow. When the blending function equals unity, the hybrid model acts 
in RANS mode whereas the LES component is recovered when T is zero. 
Although T(y) depends on the distance to the wall y, Baggett indicates that 
the blending function should be parameterized by the ratio A/LE where Le 

is an estimate of the turbulent integral dissipation length and A is a measure 
of the filter width. 

Further developments in the use of a flow-dependent blending function 
between RANS and LES regions have been made by Fan et al. [Fan et al., 
2001; Fan et al, 2002]. Indeed, the intended use of every hybrid methodol-
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ogy is to make the model acting in RANS mode for attached wall-bounded 
flow regions and switching into LES formulation in separated flow regions8. 
This scenario is quite similar to what Menter [Menter, 1994] faced in his 
work to hybrid the k — e/k — UJ RANS models.9 

Following ideas borrowed from Menter (see eq. (7.43)), Fan et al. sug­
gested using a blending function to shift the RANS model near the solid 
wall to a subgrid LES model further away for both the Turbulent Kinetic 
Energy (TKE) and viscosity: 

[hybrid RANS/LES TKE equation] = I\ [RANS TKE equation] 

+ (1 - T) [LES TKE equation] 

(7.45) 

[LES/RANS hybrid viscosity] = T. [RANS eddy viscosity] 

+ (1 - T) [LES SGS viscosity] (7.46) 

where T is a flow-dependent blending function in the hybrid RANS/LES 
simulation designed to yield a value of 1 in the attached boundary layer 

8Hamba [Hamba, 2001] adopted an opposite route by applying LES in the near-wall 
layer whereas the standard k — £ model is solved in the outer region away from the wall. 
Nevertheless, the author concluded that such an approach is less efficient than the more 
common strategies with RANS application near the wall. 

9Menter [Menter, 1994] developed a single RANS model that combines the best fea­
tures of both k — e and k — UJ model RANS model. More precisely, his model is designed 
to retain the robustness and accuracy of the Wilcox k — uj model [Wilcox, 1988b] for wall 
bounded viscous regions while enforcing the k — e model away from the solid surfaces to 
avoid the undesirable dependance of the k — UJ model to free stream values of u r o . To 
achieve this goal, Menter linearly combined both RANS models as follows: 

[Menter's hybrid model] = Fi. [k - w model] + (1. - F\) [k - s model] (7.43) 

where Fi is a blending function designed to yield a value of 1 near solid surfaces and to 
fall rapidly to 0 in the outer region of the boundary layer. The following functional form 
for F\ was designed to meet these criteria: 

f j RANS r r RANS \ h \ u\ 
FX = tanh fa4) , r, = max , ^ 500^ , LRANS = — = ± L 

\ d » kid2
w j C^u CMe 

(7.44) 

where dw denotes the distance to the closest wall. The first argument compares the 
RANS turbulence length scale with the distance to the nearest wall. This ratio is equal 
to one in the logarithmic portion of the boundary layer and approaches zero near the 
edge of the boundary layer. The second term is designed to ensure that F does not go 
zero in the laminar sublayer. 
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and to transition rapidly to zero further away. It can also be noted from 

Eq. (7.46) tha t any trusted RANS model can be blended with any preex­

isting SGS model1 0 . 

7.4.3.2 Applications 

As an example, Fan et al. [Fan et al., 2002] used Menter 's [Menter, 1994] 

k — u> model near the wall and a one-equation subgrid model away from 

walls. They modified the kinetic energy equation1 1 and the eddy-viscosity 

respectively as follows: 

Dk 

~D~t 
r (c„M + (i - r) Cd 

k1* 
diffusion (7.47) 

vt= T - +(l-T)csVkA (7.48) 

where Pk is the turbulence kinetic energy production term (approximated 

by Pk = vt£l2 where Vt is the magnitude of vorticity), e the dissipation of 

k and C^ a constant appearing in Menter 's model. A is a measure of the 

grid spacing and cs and Cd are model coefficients, cs was chosen as 0.1 

in their study while Cd was taken to 0.01 and 0.1 in two simulations. The 

blending function V is a modification of the one initially used by Menter 

(see Eq. 7.44): 

t anh [rf with n = — max 
yk v 

(7.49) 
y (l^W 

1 0The use of transport equations for the turbulent quantities is not fundamental here. 
For example, Kawai and Fujii [Kawai and Fujii, 2004] blended the Baldwin Lomax zero 
equation turbulence model [Baldwin and Lomax, 1978] with the Smagorinsky [Smagorin-
sky, 1963] SGS model thanks to a weighting function of inner and outer regions in the 
boundary layer. 

11 The modification in the k equation consists here in rewriting (and increasing) the 
dissipative term which appears to be a conventional hybrids practice. Indeed, simi­
lar modifications are performed in DES (see Sec. 7.4.4.5) and XLES (see Sec. 7.4.4.6). 
Alternate proposals have been suggested by Basu et al. [Basu et al., 2005] by reducing 
directly the modelled TKE. 
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It can be noted that in the limit of balancing subgrid production and dis­
sipation ( r = 0)12, the model returns a Smagorinsky type eddy viscosity: 

vt = cs* —A2Q (7.52) 

with a lower constant value csx nf~ = 0-1 (with Cd = 0.1) and a higher 

constant value csJ^f- — 0.31 with cd = 0.01 (to be compared with 

Csmag=0.18). 
Fan et al. [Fan et al., 2002] used their model to simulate a shock 

wave/boundary layer interaction of Mach number 3 flow over a 20 degree 
compression corner. This test case exhibiting thin layer separation is a 
very difficult test case for hybrid models since no clear separation between 
regions modelled through RANS and LES is apparent. Their results indi­
cated that the axial extent of the separated area is not well reproduced, 
mainly due to a too severe loss of modelled turbulent energy. Nevertheless, 
their approach allows a subsequent shift to an LES mode in the outer part 
of the recovering boundary layer. Improvements [Fan et al., 2003] were 
obtained by imposing an appropriate unsteady approach boundary layer 
showing that treatment of LES inflow sections is also a critical issue for 
global hybrid RANS/LES methods. 

Baurle et al. [Baurle et al., 2003] indicate that the blending func­
tion given by Eq. (7.49) always forces an LES treatment away from 
walls even if the mesh is too coarse to support resolved LES eddies, re­
sulting in lower Reynolds stress modelled compared to those provided by 
the RANS model.13 To overcome this important problem, the authors 

1 2It is worth noting that the combination of Eqs 7.47 and 7.48 in the limit T = 0 yields 
a one equation model for the transport of the subgrid viscosity: 

—— = — ( c s A 2 Q 2 - cdk) + diffusion (7.50) 

where the turbulent kinetic energy acts as a destruction term in Eq. 7.50. In addition, 
by neglecting the variation of the filter width A, one can obtain the following relation 
between the equations of k and vt • 

Dvt vt Dk 

-m=2kDi- (7-51) 

1 3This important issue encountered in any hybrid RANS/LES approach can be at­
tributed to a "groy-area." between the RANS a,nd LES region fSpa.la.rt et al. [Spalart 
et al, 1997]) and was later called Modelled-Stress-Depletion (MSD) by Spalart et al. 
[Spalart et al, 2005a] (see Sec.7.4.5). 

http://fSpa.la.rt
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redefined the blending function using ideas borrowed from the LNS 

approach (see Sec. 7.4.2): 

( tanh (t]A,aLNs)) (7.53) 

where 

&LNS = E 
,LES 

,RANS 
, 1 . (7.54) 

where E [x] is the integer part of x. 

The parameter a.LNS ensures tha t the RANS turbulence model is se­

lected if the SGS viscosity v^ES is greater than the RANS eddy viscosity 

URANS _ p u s h e r developments of this blending approach have been pursued 

by several authors. As an example Xiao, Edwards and Hassan [Xiao et at, 

2004] compared the behavior of several blending functions tha t are either 

geometry dependent or explicitly dependent of the grid: 

r „ K t anh 
Lv K 

a\\ 
t anh 

a\\ 
TA = tanh 

L RANS 

a2A 

(7.55) 

where LVK is the vonKarmdn length scale (see Sec. 7.3.3), dw the distance 

to the wall, A is proportional to the Taylor microscale, a\ and a2 are arbi­

t rary constants and LRANS is the integral turbulent length scale contained 

in the turbulence model. The authors indicate tha t T has to be a non-

decreasing function as the distance from the nearest wall increases, thus 

re-introducing a certain degree of geometry dependence. The constants of 

the model a\ = 25 and a2 = 5 were chosen such tha t the blending func­

tion T = 1/2 in the log-law region. These authors then simulate a shock 

wave/boundary layer interaction over a 20 and 25 degree compression cor­

ner. Minor differences between the aforementioned blending functions were 

observed except concerning the skin friction coefficient. These authors ob­

tained the best results (when compared with the available experimental 

data) with the blending function TVK based on the von Karman length 

scale which is "explicitly independent" of the grid. 
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7.4.4 Detached-Eddy Simulation 

7AAA General idea 

Among hybrid strategies, the approach that has probably drawn most at­
tention in the recent time frame is the Detached Eddy Simulation (DES) 
which was proposed by Spalart et al. [Spalart et al., 1997] and has since 
gone through various stages of refinement. This modelling strategy was 
suggested as a response to the conflict between the unaffordable compu­
tational cost of a true wall-bounded layer LES and the inability of clas­
sical RANS methods to treat properly industrial high Reynolds number 
flows with massive separation. The approach was given the name Detached 
Eddy Simulation since the small structures "attached" to the wall would be 
modelled in RANS mode whereas the larger ones populating the separated 
regions and wakes, i.e. "detached" to the wall, would be resolved. 

The DES idea was first proposed in 1997 using a simple modification of 
the Spalart-Allmaras [Spalart and Allmaras, 1992; Spalart and Allmaras, 
1994] RANS model and a more global definition of the technique was given 
somewhat later by Travin et al. [Travin et al., 2000] as follows: 

A Detached-Eddy Simulation is a three-dimensional unsteady nu­
merical solution using a single turbulence model, which functions 
as a sub-grid-scale model in regions where the grid density is fine 
enough for a large-eddy simulation, and as a Reynolds-averaged 
model in regions where it is not. 

From the above definition, a DES model can be obtained from a RANS 
model by an appropriate modification of the length scale LRANS, which is 
explicitly or implicitly involved in any RANS turbulence model14. The new 
DES length scale may be defined as: 

LDES = min (LRANS, CDESA) (7.56) 

where CDES is a modelling parameter to be determined and A is based on 
the largest dimension of the local grid cell: 

A = m a x ( A I ) A , / , A z ) . (7.57) 

The use of the maximum grid extension is physically justified as it 
controls which wavelengths can be resolved and the eddy-viscosity level. 

1 4The Prandtl-Kolmogorov assumption states vt ex U.C where U is the characteristic 
velocity scale and C the length scale of the energy-containing structures. 
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More precisely, in the attached boundary layer, due to the significant grid 
anisotropy (Ax « Az > Ay) typical of the grid in this flow region, in ac­
cordance with Eq. (7.56), LDES = LRANS, and the model reduces to the 
standard RANS model. Otherwise, once a field point is far enough from 
walls i.e. (LRANS < CDES&), the eddy viscosity becomes grid-dependent 
and the model acts as a subgrid scale version of the RANS model. This 
initial formulation of DES was later referred to as DES97 by Spalart et al. 
[Spalart et al., 2005a]. 

Fig. 7.13 Sketch of RANS and LES regions in a DES approach. 

Figure 7.13 shows a "natural" treatment of separation by DES in the 
sense that the entire boundary layer of thickness 5 upstream of separation 
is handled by the RANS model (i.e. S < CDES&)- Note that attached 
boundary layers are affected by the unsteady pressure field and are thus 
treated in URANS mode. 

It is important to stress that the switch from RANS to LES mode is 
fixed by the grid according to Eq. (7.56). A violation of the inequality 
& < CDES& may occur due to the use of a very fine grid in both x and z 
directions. The region corresponding to LRANS ~ CDEs& was recognized 
as potentially delicate and is called "grey-area" by the authors of DES be­
cause it is not exactly clear what happens in this region since the solution is 
neither "pure" RANS nor "pure" LES. This important problem faced in all 
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hybrid RANS/LES simulations is discussed in further details in Sec. 7.4.5 
and a visualization of this RANS/LES interface in the case of boundary 
layer separation is provided in Fig. 7.14. 

RANSJLES 
Interface J^,=CBESAJ 

Fig. 7.14 RANS/LES interface location in the vicinity of separation on an unstructured 
grid. Note that the boundary layer upstream separation has no LES content. Courtesy 
of J. Forsythe, Cobalt Solutions LLC, USA. 

7.4.4.2 DES based on the SA model 

The DES model was originally based on the Spalart-Allmaras [Spalart and 
Allmaras, 1992; Spalart and Allmaras, 1994] RANS model which solves 
one transport equation for the eddy viscosity. In the following, a brief 
description of the model is given since different implementation strategies 
are encountered in the literature depending mainly on the treatment of 
the RANS damping functions in LES mode. For the sake of clarity, the 
transition terms are omitted and the standard model reads as: 

DO ~ i 
— = Cbi5£ + - [V.{{v + V)VD)+cb2{Vv)2} 

Production " ~ ~ v y 

Diffusion 

-cwifw(~\ . (7.58) 

Destruction 
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The eddy viscosity is defined as 

vt=vfvl. (7.59) 

In order to ensure that v equals KyuT in the log layer, in the buffer 
layer and in the viscous sublayer, a damping function fvl is defined as: 

fvl = -o——3- with x = - • (7-60) 

The vorticity magnitude S is modified such that S maintains its log-layer 
behavior (S = jtf-): 

S=^/2^p-/„, + ̂ / , , 2 , fiy = I ( | i -g ) (7.61, 

which is accomplished with help of the functions15: 

fv2 = 1 - * , , fv3 = 1. (7.63) 
1 + x/«i 

In order to obtain a faster decay of the destruction term in the outer region 
of the boundary layer, a function fw is introduced: 

' -<•> -e i^k)"' • 9=r+c-(-6 -r) •r - sikl7M) 

where g acts as a limiter that prevents large values of fw. Both r and /TO 

are equal to 1 in the log-layer and decrease in the outer region. Constants 
of the model are: 

l s N o t e t h a t S can b e c o m e nega t ive which m a y d i s t u r b r a n d resu l t s in numer ica l 

b l inking . Therefore , Spa l a r t p roposed a n o the r poss ibi l i ty t o define t h e fv's funct ions: 

/ v \ " 3 - ( ! + Xfvl) ( l - fv2) 
fv2 (x ) = 1 + — fv3 (X) = ~ cv2 = 5. (7.62) 

V C„2 / X 

Now S > 0 since t h e modif ied / „2 funct ion r e m a i n s posi t ive a long t h e wall a n d / „ 3 

differs n o t a b l y from 1 in t h e close v ic in i ty of solid walls . I t h a s b e e n observed (Deck 

et al. [Deck et at, 2002a]) t h a t modif ied funct ions {fv2, fvz) shifts l a m i n a r - t u r b u l e n t 

t r a n s i t i o n b a c k w a r d b u t d o not modify t h e s t e a d y - s t a t e so lu t ion . 
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cbl= 0.1355, cb2 = 0.622, a = - , i f = 0.41 

c«;i = T ^ - H > cw2 = 0.3, cw3 = 2, c„i = 7.1. (7.65) 

Wha t is important here is tha t the model is provided with a destruction 

term for the eddy viscosity tha t contains dw, the distance to the closest 

wall. This term when balanced with the production term, adjusts the eddy 

viscosity to scale with local deformation rate S producing an eddy viscosity 

given by 

v~Sd2
w. (7.66) 

Following these arguments, Spalart et al. suggested to replace dw with a 

new length d given by 

d = min(dw,CDEsA) • (7.67) 

Postulating a local equilibrium between production and destruction1 6 

at the high Reynolds number limit, the balance between these terms yields: 

2 
/ vt 

CbiSvt^CnifZ"*^-^) (7.68) 

leading to 

Cbl 

r i f1 *̂ = ^DESCIES^S (7.69) 

f®ES c a n be determined by noticing from Eqs. (7.64) and (7.69) that : 

rDES = v-l = °^ (7 70) 
SK*ClES& f5EScwiK* {'-n'> 

and then solving the following equation for f®ES: 

/ 6 \ 1 / 6 

fDES = (fDES^ 1 + C 3 _ 

The physically acceptable root of this equation [Strelets, 2002] is given by 

f*w
DES = 0.424. (7.72) 

16 Like many turbulence models which contain cross diffusion terms of the turbu­
lent variables, the Spalart Allmaras model contains a non-conservative diffusion term 
^ ^ (VS) (see Eq 7.58) that acts as a positive source term in the v equation-and does 
not favor the decrease of eddy viscosity in LES mode. 
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Following a conventional LES practice, Shur et al. [Shur et al., 1999] cali­
brated the constant CDES on the basis of the data of Comte-Bellot and 
Corrsin [Comte-Bellot and Corrsin, 1971] on the spectrum of Decaying 
Homogeneous Isotropic Turbulence (DHIT). Their numerical approxima­
tions used to calibrate CDES are based on a centered fourth order differ­
ence scheme for the advective fluxes and a second order accurate backward 
scheme for time integration. They adjusted the constant CDES to provide 
the best fit of the resolved energy spectra to the experimental ones, with a 
special care to the correct spectral slope in the inertial range near cut-off 
number. The authors recommended the value: 

CDES = 0.65. (7.73) 

Finally, the already mentioned relation v ~ Sd2
w becomes 

Cbl 
uwlJw 

vt = CDES„ ;;DESA
2<S> (7.74) 

C*§=0.202 

which is analogous to the well-known Smagorinsky model and the equiva­
lent constant Cs appearing in the eddy viscosity can be compared to the 
constant appearing in the Smagorinsky model Csmag = 0.18. Note that 
DES also provides a dynamic SGS model in a sense. 

Some authors (Spalart [Spalart, 2001], Travin et al. [Travin et al., 2000], 
Aupoix et al. [Aupoix et al., 2001]), highlight that the comparison with 
Smagorinsky's model cannot be performed completely since we do not know 
exactly if the grid size A is really the cut-off scale. It is only known to be 
of the order of A and a set of "filtered equations" is not available. 

7.4.4.3 Possible extensions of standard SA-DES 

Breuer et al. [Breuer et al., 2003] showed that in practice, replacing dw by 
d in every equation of the RANS model can lead to unexpected distribution 
of eddy viscosity. Indeed the damping function of the RANS model may 
interpret the low eddy viscosity levels typical of resolved LES regions as 
closeness to the wall with corresponding fast non-linear drop of subgrid 
viscosity. Therefore, they suggest to disable the near wall functions in the 
low Reynolds terms only in the LES mode of DES: 

fvi = 1 fv2 = 0 fw = l. (7.75) 
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This choice is also motivated by the RANS behavior of the / functions 
farther away from the wall. Note that these modifications will theoretically 
modify the value of the additional model constant CDES = 0.65 which was 
calibrated by Shur et al. [Shur et al., 1999] using isotropic turbulence with 
the original near wall functions. Indeed, Eq. (7.75) implies: 

rw
DES = 1 (7.76) 

and the equivalent constant becomes Cs — 0.13. However the resulting 
slight modification of CDES should not be crucial [Spalart, 2000a]. It is 
worth recalling that Shur et al. [Shur et al, 1999] calibrated CDES by 
using high-order centered difference and variations of CDES can also be 
attributed to differences in numerical dissipation when using second-order 
upwind differences17. 

However, Eq. (7.75) may lead to a discontinuity of vt at the RANS/LES 
interface due to the discontinuity of /„, compared to its RANS value. There­
fore, an alternative proposal that prevents activation of the low Reynolds 
terms in LES mode has been made by Shur et al. [Shur et al, 2003] (see 
also [Spalart et al., 2005a]) by introducing a threshold function based on 
vt/v in the definition of the length scale: 

LDES = min (LRANS, * (—) CDES&) • (7.77) 

Indeed, due to the fv\ and fv2 functions (see Eqs. (7.60) and (7.63)), the 
equivalent Smagorinsky constant in the SA-DES model turns out to be a 
function of subgrid eddy-viscosity Cs (^7) which is virtually constant for 
vtlv > 15 (e.g. /„i = 1) but drops quickly to zero when vt/v < 10 (e.g. 
/„! = 0 at the wall)18. The new function * (^-) ensures that at equilibrium 

17Note that taking CDES = 0 brings the method very close from Implicit LES (ILES). 
18Indeed, Eq. (7.68) has been written by postulating a local equilibrium between pro­

duction and destruction in the high Reynolds number limit, but in practice, the balance 
between these terms yields: 

C" (S+ ̂ f e H * = W;DBS fe^)2 • ("8) 

Due to the definition of the eddy viscosity (see Eq. 7.59), one can show that: 
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the model reduces to CDES = constant and is defined by: 

\Ir = min 
y
 r , Jf2 f*DES Jv2 

100, C m l K u" 
Ju l 

(7-

where ^ is limited to ensure reasonable behavior in the DNS limit vt < 

I^ / IOO. Note tha t \1/ becomes quite strong for subgrid eddy viscosity less 

than fOz/ whilst \l> = 1 at high Reynolds number (e.g. vt ^> v and /„2 = 

0, fvi = 1) and thus does not require any re-calibration of CDES- This 

modification has been successfully applied to the DHIT problem and to the 

NACA0012 at 60 angle of at tack (see [Shur et al, 2003]). 

7'.4.4.4 Examples 

Among the global hybrid methods, the DES approach currently has the 

widest experience, and published calculations concern both generic and 

technical flows. For instance, Constantinescu and Squires [Constantinescu 

and Squires, 2004] performed calculations of sub and supercritical flows over 

a sphere, Travin et al. [Travin et al., 2000] performed DES past a circular 

cylinder, Forsythe et al. [Forsythe et al., 2003] reported DES predictions of 

the flow over an F — 15E fighter at 65° angle of attack (see Figs. 7.15 and 

7.16), Deck et al. [Deck et al., 2002b] evaluated unsteady loads due to sep­

arated flows over space launcher configurations, Kumar and Loth [Kumar 

and Loth, 2001] as well as Mogili et al. [Mogili et al, 2005] performed iced-

wing simulations and the F/A-18 Tail buffet was investigated by Morton et 

al. [Morton et al., 2004]. 

7.4.4.5 DES based on the k — u> model 

As already mentioned in Sec. 7.4.4.1, the DES-SA link is not fundamental 

and Strelets [Strelets, 2001] introduced a DES model based on Menter 's 

[Menter, 1994] Shear Stress Transport (STT) model. The driving length 

scale for the Spalart-Allmaras model is the distance to the closest wall, 

dw and the DES procedure is straightforward. In two-equation RANS tur­

bulence models, the length scale LRANS appears in different terms which 
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Fig. 7.15 Unstructured computational mesh near aircraft surface. The finest DES grid 
has approximatively 2.2 x 105 faces on the aircraft and 10 X 106 cells (mixed tetrahedrons 
and prisms) whereas 2.85 X 106 cells are used for the coarse grid. Courtesy of J. Forsythe, 
Cobalt Solutions LLC, USA. 

provides a freedom of choice [Yan et al., 2005] regarding specific terms 
where this length scale should be replaced by the DES length scale LBES 

in accordance with Eq. (7.56). 

As an example, the k and u> transport equation read: 

j^+V.{{v + vkat)Vk) (7.81) 
Dk 

Du + V. {{y + vuat) Vw) + (1 - Fi) CDk^ 

where Pk (respectively P") , Dk = e (respectively D1^) are the production 
and destruction terms of k (respectively u>) and CDk_u the cross diffusion 
term of k and ui, which are defined by: 

Dk 
~Dt 

DOJ 

~Dt 
= PU 



Global RANS/LES Methods 263 

Coarse Grid Fine Grid 

Fig. 7.16 Vorticity contours along a section of the aircraft (Coarse-grid results in the 
left half part and fine-grid DES predictions in the right-half part. The free stream 
Mach number is equal to 0.3 resulting in a chord-based Reynolds number of 13.6 X 106. 
Note the ability of DES in its LES mode to resolve turbulent features, e.g. geometry-
dependent eddies over the aircraft. Moreover, a wider range of scales is captured with 
mesh refinement. Courtesy of J. Forsythe, Cobalt Solutions LLC, USA. 

Pk = TR : S 

pw _ J_ pk 

Du f3tu2 

CDk-u = 2 — V f c . V w 
ui 

(7.82) 

(7.83) 

(7.84) 

(7.85) 

(7.86) 

where TR is the tensor of the Reynolds stresses and S is the mean strain 

tensor. The eddy viscosity is defined as: 

Vt = <t>SST ~ 
k 

(7.87) 

4>SST limits the turbulent shear stress to a\k where a\ = 0.31 and is defined 

by: 
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hsr = ', o T T T ' ^2 = t a n h (ar92) (7-'< 
max [aico, - ^ 2 j 

arg2 = max - ^ - , ^ , CDu) = max {CDk^; 10"20) (7.89) 

fi is the magnitude of vorticity, dw the distance to the wall whereas F\ 
defined by: 

, 4, . / ( Vk 500/A 4aU2k \ 
bx = tanh [arg1) , argi = mm max ————; —-r- , — pr-V 1 ; ^ y0.09ujdw' todl J 'CDuJdlJ 

(7.90) 

is a switching function that determines the value of the model constant 
(see also Sec.7.4.3). For instance, if fa represents a generic constant of the 
k — LU model and fa represents the same for the k — e equations, the model 
constants used in Eqs. 7.82 are determined by: 

<j> = F1fa + (1-F1)fa. (7.91) 

Constants of the model are: 

o-fei = 0.85, crWl = 0.5, fa = 0.075, ax = 0.31 

Tfc2 = 1-0. 

(7.92) 

In the SST model, the turbulent length scale is given by: 

L?tNS = £-• (7-93) 

One can notice that this length scale can be expressed in several terms in 
the above equations. The DES modification suggested by Strelets [Strelets, 
2001] replaces the length scale L^^s by: 

£?4f = min (L™»s, CDESA) (7.94) 

only in the dissipative term for the kinetic energy equation: 

0.856, 

7 = 

lh = 
P 

c. 

= 0.0828, CM = 0.09 

# = 0.41. 

Jk-u> 
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Since Menter's SST model is based on a blending of k — e and k — D, Strelets 
calibrated the model by running both the k — e and k — UJ DES models on 
isotropic turbulence. This lead to: 

C £ ^ s = 0.78, cfc-=s = 0 .61. (7.96) 

Strelets [Strelets, 2001] compared the ability of DES models based re­
spectively on the Spalart-Allmaras and k — w models to predict the aero­
dynamic coefficients for the NACA0012 airfoil (see Fig. 7.17) at several 
angles of attack (see Fig. 7.12 for a visualization of the flowfleld over the 
airfoil at a 45° angle of attack). The author observed that there are much 
less disparities between the two DES models than between the same two 
models in URANS mode. 

IS ' * J o OS ommt'> iJ 
0 10 20 30 40 50 60 70 80 90 ' 0 10 20 30 40 50 60 70 80 90 

a a 

Fig. 7.17 Lift and drag coefficient for NACA0012 airfoil : comparison of URANS and 
DES predictions with experimental data. Note that beyond stall, URANS suffers from 
a very large drag and lift excess (especially for a > 30°) whereas both DES-SST and 
DES-SA are in fair agreement with experiment. Courtesy of M. Strelets, NTS, Russia. 

7.4.4.6 Extra-Large Eddy Simulation (XLES) 

Kok et al. [Kok et ah, 2004] attached importance to the precise SGS model 
employed in the LES mode of the hybrid approach and outlined that the 
DES models do not include a clearly defined SGS model. As an example, 
it has been seen in Sec. 7.4.4.2 that in DES-SA, the model returns a 
Smagorinsky-like model only if, in the high-Reynolds number limit, local 
equilibrium is assumed between the production and destruction terms of 
the eddy viscosity. The same remark holds for the DES-SST where a local 
equilibrium assumption in both the k and to equations has to be assumed. 
This assumption for both production and dissipation of k seems unlikely 
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to appear simultaneously in situations far-from-equilibrium regimes like 

massively separated flows (see Chapter 3) 

Bush and Mani [Bush and Mani, 2001] proposed an hybrid RANS/LES 

model where the k — SGS model [Schumann, 1975] is recovered in LES 

mode without making an equilibrium assumption. They applied the basic 

idea of DES (see Eq. (7.67)) to all turbulent variables. Inspired by them, an 

alternative proposal to DES-SST by Kok et al. [Kok et al., 2004] consists 

in a modification of the turbulent length scale in the dissipation term of k 

but also in the eddy viscosity expression. The formulation named X-LES 

(Extra Large Eddy Simulation) consists of a decomposition of a RANS 

k - LO T N T [Kok, 2000] turbulence model and a k - SGS model. The 

differences between the RANS and the SGS model lies in the modelling of 

the eddy viscosity and the dissipation of the turbulent kinetic energy for 

which different length scales are used: 

1 if ^ Jv ^ 

vt = LRANSki, e = Cjx- , LRAN s = — (7.97) 
LRANS U 

for the RANS model and 

vt = C1Ak^, £ = C2~, LLES = C1A (7.98) 

for the SGS model. 

Similarly to Eq. (7.67), the XLES formulation is obtained by replacing 

the length scales in the eddy viscosity by a composite length scale: 

LXLES = min (LRANS, d A) (7.99) 

so tha t 

vt=LXLEsk^ and e = Cii- (7.100) 
LXLES 

or 

ft = min - ,Cifc2A (7.101) 

..LES 
.RANS t 
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and 

(7.102) 

Where C\ — 0.06 was calibrated in LES mode with a DHIT simulation and 

C2 = C^/Ci in order to make vt and e switch simultaneously. In addition, 

the production, destruction and diffusion terms are modified via the eddy 

viscosity. The flow solutions are dynamically divided into RANS and LES 

regions. In regions where LRANS > C i A , XLES is in LES mode and the 

original fc-equation SGS model is applied whereas approaching a solid wall, 

LRANS goes to zero and thus the model acts in RANS mode. 

It can also be noted tha t the eddy viscosity defined by Eq. (7.101) is 

very close from the one provided by LNS (see Eq. (7.39)) which takes the 

minimum between the RANS eddy viscosity and the SGS viscosity. The 

XLES approach falls also into the category of DES due to the definition 

of the XLES length scale (see Eq. (7.99)). Equations (7.102) and (7.101) 

can also be compared to those provided by the blending methods (see Eqs. 

(7.47) and (7.48)) except tha t the shift from RANS to LES is achieved 

through a smoother blending function rather t han with the min function 

within XLES. This illustrates again how these approaches are close to each 

other. Therefore, the important issue of "grey-area" discussed in Sec. 7.4.5 

faces any hybrid RANS/LES method. 

7.4.5 Grey Area-Grid Induced Separation (GIS) 

Detached Eddy Simulation is well understood in thin boundary layers where 

the model acts in RANS mode, and in regions of massive separation where 

the model acts as a subgrid scale version of the RANS model. However, 

s tandard DES introduces a significant dependency into the RANS par t of 

the simulation. Indeed, in its intended use, at tached boundary layers are 

treated entirely in pure RANS mode and, according to Eq. (7.67), the 

simulation requires a near wall grid spacing in tangential directions tha t is 

larger than the boundary layer thickness a tha t location (Ax « Az > S, see 

Fig. 7.18a). The other extreme is the LES grid with Ax < 5 (see Fig. 7.18c) 

since the model acts in LES mode with wall-modelling very near the wall. 

Unfortunately, difficulties arise for "ambiguous" grids [Spalart, 2004] when 

the switching to LES mode occurs inside the boundary layer, e.g. when the 
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grid brings the d = CDES& branch of Eq. (7.67) to intrude the bound­
ary layer (see Fig. 7.18b). The region corresponding to d w A is called 
"grey-zone" by the authors of DES (Spalart et al. [Spalart et al, 1997; 
Spalart, 2000b]) because it is not clear what exactly happens in this region 
in which the model needs to convert from fully modelled turbulence (at­
tached boundary layer) to mostly resolved turbulence (massive separation). 
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Fig. 7.18 Grid densities in a boundary layer: a) RANS (Ax > <5); b) ambiguous spacing; 
c) LES (Ax < 8). Assume Az RS A X (adapted from Spalart, 2004). 

The result is a weakened eddy viscosity, but not weak enough to allow 
LES eddies to form resulting in lower Reynolds stress levels compared to 
those provided by the RANS model.This was referred to as "Modelled-
Stress-Depletion" (MSD) by Spalart et al. [Spalart et al., 2005a] and is 
illustrated in Fig. 7.19. In addition, the depleted stresses decrease the skin 
friction coefficient and at worst may cause premature separation or "Grid-
Induced Separation (GIS)" [Menter et al., 2003]. 

Nikitin et al. [Nikitin et al., 2000] used DES as a wall-layer model in cal­
culations of plane channel flow with different grids exploring a wide range 
of Reynolds number (180 < ReT < 8000). Their calculations showed some 
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Fig. 7.19 Modelled-Stress-Depletion (MSD) in flat plate boundary layer; CDESA m 
0.15. Note that the DES peak eddy viscosity is reduced by about 75% and the skin 
friction by 20% over the RANS prediction. 

promising results since the turbulence in the outer layer was sustained even 

in the grid areas not particularly refined ((A^)max ss 8000). Moreover, 

these authors have shown tha t the velocity profiles have a "modelled" loga­

rithmic layer near the wall (contained in the RANS model) and a "resolved" 

logarithmic layer in the core region of the channel since LES is performing, 

but the two layers have a mismatch of several wall units in U+. This is­

sue is called "log-layer mismatch (LLM)" by Spalart et al. [Spalart et al., 

2005a]. Furthermore, the skin friction coefficient was under-predicted by 

approximately 15% in most cases. The same under-prediction has also been 

observed by Caruelle and Ducros [Caruelle and Ducros, 2003] in the case of 

a DES calculation of a flat plate on a LES grid. This intermediate blend­

ing region within the DES approach was studied more deeply by Piomelli 

et al. [Piomelli et al, 2003]. They performed LES of the flow in a plane 

channel at high Reynolds number by varying the location and extent of 

this blending layer. Their s tudy shows tha t the "DES super-buffer layer" 

is characterized by very long eddies, with unphysically long time-scales. 

Improvements were obtained by reducing the value of CDES to bring the 

outer-flow eddies closer to the wall. Similarly, in hybrid RANS/LES com­

putat ions of channel flow, Baggett [Baggett, 1998] also observed too large 

streamwise structures compared with the expected size of the streaks pop­

ulating the attached boundary layer. Therefore, Baggett suggested tha t 

hybrid RANS/LES methods may be inappropriate for the use of near-wall 

flow regions because they cannot maintain a physical near-wall cycle. He 
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argued that the outer flow is coupled to the wall through a physically in­
correct buffer layer since the small scale perturbations from the buffer layer 
are responsible for the major part of the turbulence production. Piomelli 
et al. [Piomelli et al, 2003] used backscatter forcing to introduce small 
fluctuations in the transition region with the object to generate resolved 
fluctuations. Peltier and Zajaczkowsi [Peltier and Zajaczkowsi, 2001] mod­
elled the effects of these smaller scale eddies populating the buffer layer 
using an ad hoc white noise forcing. They showed that the core flow is able 
to extract energy from these fluctuations to organize turbulence eddies. 
The challenging topic of turbulence generation is discussed in Sec. 8.3. 

At this stage, it is worthwhile to stress that grey areas are not spe­
cific to DES. Indeed, this issue arises as soon as global hybrid RANS/LES 
methods are employed since a transition zone exists in which the resolved, 
energy-containing eddies are gradually generated and grow. More precisely, 
one wonders how quickly the unsteady turbulent eddies develop after the 
model has switched from the RANS to the LES mode. This concern is 
of outstanding importance for the prediction of free shear layers since a 
delayed onset of resolved eddies may deteriorate the assessment of turbu­
lent stresses due to a reduction of the unresolved turbulence level. Such 
situations may appear for flows displaying only weak instabilities. 

To date, DES is the most widely used hybrid method and imperfections 
have just become visible earlier. Nevertheless, grey-areas need careful mon­
itoring and some efforts have been done to try to overcome GIS drawback. 

7.4.6 Solutions against GIS 

7.4.6.1 Modifying the length scale 

Some initial effort was applied against GIS with moderate success. One can 
notice from Eq. (7.67) that the location of the grey area depends both on 
the definition of the DES length scale and on CDES- TO keep the original 
value CDES = 0-65 calibrated on isotropic turbulence, Caruelle and Ducros 
[Caruelle and Ducros, 2003] introduced a second constant CDES2 only used 
for selecting the switch position so that: 

d = CDEs& if dw>CDES2A. (7.103) 

The modified distance d is therefore discontinuous. This approach is nev­
ertheless difficult to use in a predictive industrial context. 

An alternative proposal has been suggested by Forsythe et al. [Forsythe 
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et ai, 2004] based on a function of d and CDES^ t ha t overshoots CDESA 

when they are nearly equal. More precisely, the authors modified the DES 

length scale according to the equation: 

d = min (CDEsmax (n2 — C W s A , A J ,dw) (7.104) 

where n is the ratio of the new RANS-LES interface height to the original 

height. In other words, the parameter n limits by how much d is allowed 

to exceed CDESA. The authors used the value n = 3 to push the grey-area 

outside of the boundary layer. These proposals have to be viewed as a 

part ial solution because further refinement will defeat them. 

7.4.6.2 Zonal-DES 

For complex geometries, the design of the DES grid appears to be a dilemma 

for the user. On the one hand, the RANS par t of the simulation requires a 

near wall grid spacing in tangential directions tha t is larger than the bound­

ary layer thickness at tha t location to avoid GIS. On the other hand, there 

is no reason why a DES calculation would accept a coarser grid than an 

LES calculation (except in the boundary layer). Especially, a LES grid is 

locally refined in all directions since strongly anisotropic grids are inefficient 

[Spalart, 2001]. As a result, the grid is also refined in regions not intended 

to be handled by LES. This situation is practically unavoidable in struc­

tured grids where refinement is required in some region of high geometric 

curvature or in presence of thick boundary layers. 

This dilemma has motivated the development of the zonal-DES 

approach [Deck, 2005b] where fully at tached boundary layer regions are 

treated in RANS mode no mat ter how fine the grid is. Tha t means tha t , 

following the example of RANS-LES coupling methods, the user has to 

select individual RANS and LES domains. The interest of this approach 

is tha t the user can focus his grid refinement on regions of interest (e.g. 

LES regions) without corrupting the boundary layer properties farther up­

stream or downstream. In addition, the use of special gridding strate­

gies such as patching methods is straightforward with this multi-domain 

approach. As an example, zonal-DES has been recently used [Deck, 2005a] 

together with a patch-grid method to investigate the unsteady flowfield 

over a high-lift wing with deployed slat and flap (see Fig. 7.20). Indeed 

this flow exhibits large low speed areas, strong pressure gradients, conflu­

ence of boundary layers and wake, unsteadiness and three-dimensionality 
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on fairly large scales. Each of these can create a challenging issue for a 
hybrid RANS/LES approach (see Fig. 7.21) since a full-LES of this flow is 
unaffordable due to the wide range of excited scales. 

Fig. 7.20 Grid topology and zonal DES. The merging of the slat wake with the main 
body plays a key-role on the maximum lift coefficient CLmax evolutions. This merging 
is explicitly treated in URANS mode as well as the attached boundary layer on the main 
wing, slat and flap. Note also that three-dimensional computations are limited to a zone 
close to the airfoil where the flow is turbulent, whereas two-dimensional simulations are 
performed in the far-field (except in the wake). 

This explicit character of the splitting of the flow zones differs from 
zonal RANS/LES coupling since no turbulent fluctuations are reconstructed 
at the interface (see Chapter 8). Similarly to other global hybrid meth­
ods, zonal-DES is well adapted to handle separated flows which develop 
rapidly strong instabilities which overwhelm the turbulence inherited from 
upstream boundary layers. This approach may be useful to treat real-
life geometries with a very different level of sensitivity in different regions 
and has been used to investigate transonic buffet on supercritical airfoils 
[Deck, 2005b] and supersonic base flows [Simon et al, 2006] as well as to 
assess unsteady loads over a wide range of flight vehicles including launcher-
afterbodies, overexpanded nozzles and subsonic missile intake flows [Deck 
et al, 2005]. 



Global RANS/LES Methods 273 

Fig. 7.21 Instantaneous flowfield on a High Lift Device wing using zonal-DES. The 
x — y grid has 250, 000 points, and the spanwise grid has 31 points with Az/c = 0.002. 
The time step is 2.2 X 10~5c/Uoo- The chord Reynolds number is 1.8 X 106. Note the 
self-exciting shear layers growing in the slat and flap coves as well as the propagation of 
pressure waves emanating from the main wings's trailing edge (Deck, 2005). 

7.4.6.3 Shielding the boundary layer-Delayed Detached Eddy 
Simulation 

GIS is not specific to the SA-DES "version" of the model. Indeed, the DES 
modification of Strelets concerning the k — UJ model (see eq. (7.95)) can be 
formulated as a multiplier to the destruction (i.e. dissipation) term in the 
k equation: 

(Lk-"S \ e = Cfj,ujk.FDEs with FDES = max I — — ^ i 1 ! - (7.105) 

The main practical problem with this DES formulation is that there is no 
mechanism to prevent the limiter from becoming active in the attached 
portion of the boundary layer. 

As the SST model is based on a zonal formulation, differentiating be­
tween the boundary layer and the rest of the field, Menter and Kuntz 
[Menter and Kuntz, 2004] proposed to use the blending functions F\ or Fi 
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(see Eqs. (7.90) and (7.88)) to disable the DES limiter inside the boundary 

layer. They proposed the following modification for the SST-DES model: 

/ J^RANS \ 

FDES = max I ^ ~ (1 " fd), 1 I fd = tt or F2 (7.106) 

fd = 0 recovers the formulation proposed by Strelets [Strelets, 2001], see 

Eq 7.105. Fi and F2 functions equal 1 in the boundary layer and fall to 

zero rapidly at the edge. Menter and Kuntz recommend the use of F2 

which shields most of the boundary layer. In addition, they indicate tha t 

refinement of the surface grid below 0.1(5, where 5 is the boundary layer 

thickness, should be avoided. 

Inspired by them, Spalart et al. [Spalart et al, 2005a] redefined the 

DES length scale as follows: 

d = dw- fdm&x(0.,dw-CDEsA) (7.107) 

where fd is a shielding function designed to be 1 in the LES region 

and 0 elsewhere. Therefore setting fd to 0 yields RANS (d = dw) no 

mat ter how fine the grid is, while setting it to 1 gives s tandard DES 

(d = min(dw,CDEsA)- The subscript "d" represents "delayed" and this 

new version of the technique is referred to as DDES for Delayed DES. 

To achieve this goal, Spalart et al. [Spalart et al., 2005a] proposed the 

following definition of fd (similar to 1 — F2): 

fd = 1 - t anh ( [8r d ] 3 ) (7.108) 

with 

- = OTWA' = a41 ("09) 

where vt and v are respectively the eddy and molecular viscosity, Uij the 

velocity gradients and dw the distance to the wall. Td is a slightly modi­

fied version of the parameter r = - " appearing in the SA model (see 

Eq. (7.64)) which represent the ratio (squared) of the model integral length 

scale to the distance to the wall. 



Global RANS/LES Methods 275 

Fig. 7.22 DDES behavior in flat plate boundary layer with LES-like resolution 
(Ax+ ss 50, Aj/+ si 1, Az+ ~ 15). Note that the modified length scale d follows the 
LES branch farther away from the wall than it would in DES97. More precisely, one 
can notice that d = dw over more than half of the boundary layer thickness and at 
its peak, exceeds C D B S A by more than an order of magnitude. The second peak near 
y/S ~ 1.1 — 1.2 is due to the shear rate reaching zero a the edge of the boundary layer 
and entering r^. However, it is not noticeably disturbing the eddy viscosity. 

Figure 7.22 presents the evolution of 1 — fa near the wall and other 

quantities relevant to DDES on a very fine flat plate grid. This is a strong 

case since the ambiguous grid spacing penetrates deeply into the boundary 

layer. One can notice tha t DDES preserves the RANS velocity profile 

almost fully. 

Although the new definition of d does not constitute a mere adjustment 

within DES, there is an essential change. Indeed, the DDES length scale 

does not depend only on the grid but depends also on the time-dependent 

eddy viscosity field. DDES has been exercised by several authors in differ­

ent codes on subsonic and supersonic boundary layers with different grid 

refinements as well as on a backward facing step, a circular cylinder and 

on a single and multi-element airfoil. These successful tests showed tha t 

the RANS mode is maintained in thick boundary layers whilst maintaining 

LES content after separation. 
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7.5 S u m m a r y 

This chapter summarizes a number of unsteady strategies ranging from un­

steady statistical approaches tha t solve the averaged Navier-Stokes equa­

tions throughout the entire computational domain to global hybrid methods 

which are able to switch automatically from RANS to LES resulting in a 

change in the resolution in terms of frequency and wave numbers. The 

capabilities of these methods have been demonstrated and supported by 

a wide set of applications showing tha t the recent developments in hybrid 

RANS/LES are natural candidates for engineering applications. 

Therefore, to provide some guidelines for using these methods for in­

dustrial turbulent flow modelling, let us introduce three categories of flows 

where steady-state calculations are not sufficient to properly describe the 

physical phenomena: 

• Category I: 

It consists of flows characterized by a scale separation between the 

unsteadiness of the mean field and turbulence. This kind of situation 

arises when boundary conditions impose flow unsteadiness. A generic 

example may be the case of a body motion like a small-amplitude forced 

oscillation of the vehicle so tha t the flow remains fully at tached or 

slightly separated. This type of motion is used for the numerical (and 

experimental) prediction of the damping derivative coefficients. An 

other example may be the flow around an helicopter blade where the 

periodic forcing is imposed by the angular velocity of the rotor. 

• Category II: 

It includes massively separated flows characterized by a large scale un­

steadiness dominating the time-averaged solution.This kind of flows are 

populated by energetic wake eddies, e.g. strong instabilities which over­

whelm the turbulence inherited from upstream boundary layers. Many 

technical flows fall into tha t category like the flow behind a car, over 

an aircraft or airfoil at high angle of at tack as well as in the unsteady 

wake developing on the leeward-side of buildings. Note from the above 

examples tha t the location of separation is triggered more or less by 

the geometry. 

• Category III: 

It categorizes flows tha t are quite sensitive to the Lagrangian history 

of the upstream or free-stream turbulence. As mentioned by Spalart 

[Spalart, 2000a], this kind of flows are rather submitted to convective 
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instabilities than to absolute instabilities (see [Huerre and Monkewitz, 

1990]). This constitutes the main difference between flows of category 

II and III. A generic example is given by a shallow separation bubble 

on a smooth surface induced by a moderate adverse pressure gradient. 

Although a universal method for industrial unsteady flows including of 

categories I, II and III will not be available in the near future, useful results 

for engineering applications can be obtained by adapting the level of mod­

elling to the problem of interest. According to our classification of unsteady 

methods (see Fig. 7.2), the capabilities of unsteady statistical approaches, 

global and zonal hybrid RANS/LES methods are gathered in the following 

Table. 



Family 

Unsteady 
statistical 

approaches 

Vt = Vt{ljRANs) 

Global hybrid 
methods 

"t = Vt(LRANS, A ) 

Zonal hybrid 
methods 

Name of the method 

URANS.PANS 
SDM, Ha Minh (1999) 

OES, Braza (2000) 

TRRANS 

Travin et al. (2004) 

SAS 
Menter et al. (2003) 

VLES (FSM) 
Speziale (1997) 

LNS 

Batten et al. 

Blending methods 
Baurle et al. 2003 

DES 
type 

methods 

DES 
Spalart (1997) 
Strelets (2001) 

XLES 
Kok et al. (2004) 

Zonal DES 
Deck (2005a) 

DDES 

Spalart et al. 

(2005) 

RANS/LES coupling 
Wall-Modelled LES 

NLDE 

Formulation 

same turbulence model as in RANS 
turbulence model modified 

S D M , ^RANS 

STRRANS = ERANS-FTRRANS 

17 s \2 1 FiRRANt, maX\\oTRRANS^) - 1 

turbulent length scale sensitized to LVK 

0 < a(L±/LK) < 1 

a _ mm {VR\NS+€>
1) 

vt = Tv?ANS + (1 - T) v^BS 

r = r f . ^ ) 
\ LR ANS 1 Vt = U X £ 

C = min (LRANs,LA) 

similar to DES, DES limiter applied 
to all turbulent variables 

similar to DES,DES limiter 
overridden explicitly in selected zones 

£ = LRANS — fdmax (0, LRANS — LA) 
f 0 V t A in the TBL 

*d ~ \ 1 in LES regions 

RANS and LES models applied separately 
LES content is explicitly reconstructed 

at the RANS/LES interface 

RANS/LES 
interface 

/ 
/ 

no clear border 

no clear border 

no clear border 

flow dependent 

flow dependent 

fixed (SA-DES) 
flow dependent 

(SST-DES) 
flow dependent 

fixed 

flow dependent 

fixed 
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Table 7.2 Meanings of the grade used in the summary table, 
"limited interest" means that similar quality results can be 
obtained at lower computational cost by other methods 

grade reliability 

+ well-adapted 
+ ~ adapted but of limited interest 
+? may or not be adapted (e.g. case-dependent) 
—? limited and/or questionable accuracy 

— ~ not adapted for practical reasons (CPU cost) 
— not-adapted 

First of all, URANS has still its place and can be successfully used in 

complex industrial geometries where the flow is forced to be unsteady be­

cause of unsteady boundary conditions (flows of category I). The use of 

URANS methods to handle flows of category II like massive separation is 

less clear. This comes mainly from the fact tha t dominant eddies in mas­

sively separated flows are highly specific of the geometry and do not have 

much in common with the s tandard eddies of the thin shear flows tha t 

classical RANS are designed to model. The question whether a model can 

predict turbulent structures rests simply in the level of eddy viscosity pro­

vided by the turbulence model. Therefore OES (or SDM) may improve 

URANS predictions for tha t class of flows. The TRRANS and SAS models 

are difficult to classify since they obviously defy the traditional boundaries 

of URANS and LES. Indeed, we distinguished in Fig. 7.2 URANS and LES 

whether or not the eddy viscosity is sensitized to a filter width or grid spac­

ing A. TRRANS and SAS are not "explicitly" sensitized to grid spacing 

and therefore preserve the RANS spirit of the underlying model. Neverthe­

less these methods are capable of resolving turbulent structures down to the 

grid limit in highly separated flows. The ability of these methods to t reat 

systematically flows of category II is not fully established. As an example, 

TRRANS has failed to support unsteadiness in the backward facing step 

flow which is normally a good candidate for hybrid RANS/LES methods. 

The border between the URANS and LES behaviors of these models is not 

clear but both methods are very young and a deeper understanding of the 

change in the resolution should also evolve. 

Flows of category II represent an important class of flows of engineering 

interest. Therefore, in recent years, hybrid RANS/LES methods have be­

come increasingly important among the turbulence modelling community. 

The main idea of these approaches is to apply LES in massively separated 
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flow regions and URANS in the attached boundary layers. We have seen 
in this chapter that all variants of this family are close to each other and 
rely mainly on a comparison of the integral turbulent length scale LRANS 

provided by the RANS model and some representative of the mesh spacing 
A or filter width (see Table 7.1). The cell size A therefore controls which 
wavelength can be resolved as well as eddy viscosity levels. This decrease 
of eddy viscosity farther away from solid walls allows eddies to develop 
rapidly. Global (or non-zonal) RANS/LES strategies rely on a single set of 
model equations and a continuous treatment at the RANS/LES interface. 

The definite differences between these hybrid RANS/LES methods rely 
on the choice of: 

(1) the continuous (or not) treatment of the eddy viscosity across the in­
terface that is either fixed or flow dependent. 

(2) The underlying RANS and SGS model. 

For example, the DES modification concerns only the source term(s) 
involved in the turbulence model19 and the eddy viscosity remains contin­
uous across the interface. Conversely, LNS takes the weaker between the 
RANS and subgrid viscosity. XLES like LNS defines a clear SGS model 
in the LES mode (k — SGS and Smagorinsky models for XLES and LNS 
respectively) whereas DES blends the concept of RANS and SGS. The ne­
cessity whether the precise determination of the SGS model employed by 
RANS/LES approaches is a key issue or not is still questionable. Indeed, 
we do not know if the grid extension spacing A is really the cut-off scale and 
if a set of "filtered equations" is available. It would be fair to say that we 
solve the Navier-Stokes equations with a certain level of dissipation similar 
to that provided by a SGS model. Note that an eddy viscosity decrease 
can also compensate for numerical dissipation on coarse grids! Global hy­
brid RANS/LES has sometimes been presented as a "coarse-grid version of 
LES" (see [Spalart et at, 2005a] for a discussion). This statement is not 
correct because there is no reason why an hybrid RANS/LES calculation 
would accept a coarser grid than an LES except, of course, in the boundary 
layer where the hybrid model acts in RANS mode. As for LES, the design 
of a correct (safe?) hybrid RANS/LES grid to handle complex geometries 
is a challenging task. The user has also to make decisions on the choice 

1 9The DES formulation leads to a discontinuity in the gradient of the length scale that 
enters the destruction term of the turbulence model due to the min function employed 
in the Formula (7.67). 
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of the time-step and numerical schemes that may have serious implications 
[Strelets, 2001] on the final results (see Fig. 7.23). 

Another critical issue that faces any hybrid RANS/LES method (and 
not only DES!) is the drawback of grey-areas in which the model needs 
to switch from fully modelled turbulence (in the attached boundary layer) 
to mostly resolved turbulence (within massive separation). The "auto­
matic" switching from RANS to LES mode does not imply an instantaneous 
transformation of the resolution level and global hybrid approaches are not 
adapted to treat flows of category III. Grey areas need careful monitoring 
and some solutions to overcome this drawback have been presented in this 
chapter. 

Global hybrid techniques combining RANS and LES modelling will con­
stitute the basis of industrial tools in the mid-term and their domain of 
application is already quite interesting. The next foreseen challenge in ap­
plied numerical aerodynamics will be the capture of the boundary layer 
dynamics including transition and separation issues (e.g. flows of category 
III). This second class of hybrid methods is discussed separately in the next 
chapter. 
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h^ 

Fig. 7.23 Zonal-DES of a base flow. The same grid (Nxyz = 7.106 nodes) and time-
integration scheme are used in both calculations. Upper part: Roe's upwind scheme 
with minmod limiter; lower part: low-dissipative version of the AUSM scheme. Note 
the drastic effect of the spatial differentiating scheme (e.g. numerical dissipation) on the 
turbulence resolving capabilities (Deck, 2005). 



Chapter 8 

Zonal RANS/LES Methods 

This chapter is devoted to the discussion of zonal couplings between RANS 
and LES methods via the definition of multiresolution/multidomain meth­
ods. The main problems including interfacing conditions as well as turbu­
lence reconstruction are presented. 

The global hybrid methods discussed above (see Chapter 7) are based 
on a continuous treatment of the flow variables (such as the velocity field) 
at the RANS and LES interface. These methods introduce a "grey-area" in 
which the solution is neither "pure" RANS nor "pure" LES since the switch 
from RANS to LES mode does not imply an instantaneous change in the 
resolution level. We thus qualified global methods as "weak RANS/LES 
coupling methods" since there is no mechanism to transfer the modelled 
turbulence energy into resolved turbulence energy. These global methods 
may not be adequate in situations where upstream or free-stream turbulence 
play a significant role, as well as in cases in which separation is not triggered 
by a geometric singularity. 

The use of pre-defined "pure" RANS and "pure" LES zones in which 
classical RANS and LES models are utilized may alleviate this "grey-area" 
problem. Zonal hybrid methods are therefore based on a purely discontin­
uous treatment of the RANS/LES interface. The main difficulty is that in­
formation must be exchanged at the RANS/LES domain interface between 
two solutions with very different spectral contents. Thus, these methods 
fall into the category of "strong RANS/LES coupling methods". 

This change in the resolution raises the problem of determining the 
associated boundary conditions at the RANS/LES interface since those 
associated with the RANS governing equations can no longer be used to feed 
the LES solution. The problem of strong RANS/LES coupling is equivalent 
to a multi-resolution decomposition of the problem and can take several 
forms as illustrated in Fig. 8.1. 

283 
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LES 
b) 

y////////////////M^^^ 

Fig. 8.1 Several configurations of RANS/LES coupling: a) Wall-Modelled LES b) Tur­
bulent inflow condition c) embedded LES. 

Whilst global hybrids aim at covering the entire boundary layer in the 
URANS mode, zonal-hybrid methods aim at covering only the inner-
part of the boundary layer. Consequently, LES content has to be gener­
ated in the outer part of the boundary layer. This first type of problem 
is sometimes referred to as Wall-Modelled LES [Spalart, 2000a]. 
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• The second type of RANS/LES coupling aims at representing a tur­

bulent inflow especially when a LES domain is located downstream a 

RANS domain. In this case, synthetic turbulent structures have to be 

generated to match statistical characteristics provided by the RANS 

side. 

• The most general multi-domain/multi-resolution problem concerns the 

case where a local LES simulation is embedded into a global RANS 

simulation. 

In all cases, the spatial derivatives across the RANS/LES interface of 

the averaged flowfield are discontinuous and synthetic turbulence must be 

generated at the inflow of the LES domain when it is located downstream a 

RANS region. Implementation of inflow conditions for LES is a serious and 

still open problem. Indeed, using the RANS field alone to generate inflow 

da ta for the LES domain cannot be sufficient: additional modelling which 

includes further assumptions on local length scales, time scales and energy 

distribution is required to recover an efficient inlet condition for LES. 

This chapter is devoted to the presentation of zonal RANS/LES meth­

ods and is organized as follows. The RANS/LES interface problem and 

possible numerical t reatments are discussed in Sec. 8.1. The main inflow 

da ta generation methods for zonal hybrids calculations like mapping tech­

niques and synthetic turbulence reconstruction are presented respectively 

in Sec. 8.2 and Sec. 8.3. 

8.1 Theore t i ca l S e t t i n g of R A N S / L E S C o u p l i n g 

8.1.1 Full-variables approach 

One of the first a t tempts to derive a consistent discontinuous coupling be­

tween RANS and LES was suggested by Quemere and Sagaut [Quemere 

and Sagaut, 2002]. They derived a general framework for the definition of 

the exchange of information at the RANS/LES interface, which relies on 

the definition of some interface variables to construct a transfer operator 

at the interface. 

For the sake of clarity, let us consider two domains Q} and fl2 tha t are 

assumed to have different grid resolutions with a common boundary (T). 

With reference to Chapter 2, the fine domain (LES) is noted fi1 and Q,2 

refers to the coarse one (RANS). Therefore, the characteristic cut-off length 
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scales satisfy the inequality A1 < A2 (see Fig. 8.2). To distinguish variables 
related to the two domains, • * variables refer to the high resolution domain 
and »2 variables to the low level resolution domain. 

Fig. 8.2 Sketch of the multi-resolution problem. 

The aerodynamic field in each domain is split into its respective filtered 
and fluctuating part: 

u = u<]) 

u f ( 2 ) 

Uj on fl 

u , on n2. (8.1) 

The difference between the filters involves a discontinuous behavior of the 
filtered variables and the fluctuating values at the interface which in turn 
affects the subgrid viscosity that accounts for the effect of the subgrid scales: 

_ ( 1 ) , _ ( 2 ) 
u \ T u 

|r ' |r 

7^U2 
,(!)| ±v, (2) 1.2) 

Quemere and Sagaut [Quemere and Sagaut, 2002] proposed a cou­
pling algorithm for an explicit time integration scheme associated to a 
cell-centered finite volume discretization. This coupling is performed by 
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reconstructing the Dirichlet values and the corresponding value of the sub-

grid model in a row of ghost cells associated to each domain along the 

interface T (see Figs. (8.2) and (8.3)). Therefore, the coupling procedure 

acts directly on the computed variables and the modified fluxes at the in­

terface are obtained directly from the reconstructed field at the interface. 

In this region, there exists a two-way coupling: 

• a frequency restriction of the solution for the coarse domain f22: 

n^tf: u[r
2>=^2(u[») (8.3) 

• a frequency enrichment of the solution for the fine domain: 

tf^fi1: u W = 0 2 ^ ( u [ r
2 ) ) (8.4) 

where C>i—2 and 02—i are respectively the restriction and enrichment 

operators at the interface1. From now on, we adopt the notations 

URANS = u ( 2 ) (respectively tt2 = QRANS) and uLEs = u ( 1 ) (respec­

tively D,1 = flLEs)-

8.1.1.1 Enrichment procedure from RANS to LES 

The information provided by the RANS domain is used to derive some 

boundary conditions for the LES domain. This enrichment procedure char­

acterized previously by the operator 02-»i ( s e e Eq. (8.4)) can be interpreted 

as a de-filtering or de-convolution procedure in which high frequencies are 

generated. The basic idea proposed by Quemere and Sagaut [Quemere 

and Sagaut, 2002] consists in introducing the frequency complement S\i\R L 

which has to be added to the RANS (e.g. low frequency) signal to recover 

the LES (e.g. high frequency) signal: 

<5u|Rji = uLEs - URANS- (8.5) 

This quanti ty has to be computed in the ghost cells of the LES domain in 

order to get a reliable estimation of VLLES at this location. The particular 

t reatment proposed by Quemere and Sagaut can be described as follows. 

Let us first introduce (see Fig. 8.3): 

• Xfj: center of the ghost LES cell embedded into the RANS cell. 

xIt can be noted from Eqs 8.3 and 8.4 that Oi—2 ° 02—l = 0 2 - 1 ° Oi-»2 = Id, 
where Id is the identity operator. 
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• X.R: center of the last real cell of the LES domain facing the RANS/LES 
interface. 

RANS domain 
(T) 

Q LES 

LES domain 

x. 
X' 

Q RANS 

Fig. 8.3 Sketch of the information transfer between RANS and LES domains. 

The reconstruction is obtained with the following formula: 

uLES (x££ S ,£) = URANS (x£BS,£) + C6u\RtL (x LES 

where 

(8.6) 

Su\RtL(^ES
}t)=uLES{x LES 

\U-LES 
LES 

-*)>, (8.7) 

where the value of the RANS field URANS at point XQBS is obtained by 
interpolation of the RANS field2. C is a weighting factor that was em­
pirically defined by Quemere and Sagaut as the ratio of the character­
istic length scales evaluated from the volume of the ghost cell and the 
first interior cell respectively. This procedure is similar to the one devel­
oped by these authors in the context of multidomain/multiresolution LES 
(see Sec. 5.5). 

ULES (XRES) is obtained directly in the LES domain. Finally, 
(ULES {XRES))Q represents an estimation of the RANS field at point xj^ES, 

2 The RANS and LES domains are generally only partially coincident. 

file:///U-LES
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obtained by averaging the LES field over the volume fl. This volume is, ac­
cording to the authors, case-dependent. In general, it is taken as an average 
over the homogeneous directions of the flow3. 

The authors indicate that such a treatment is valuable only in the case 
of "lateral" or "outflow" boundaries. The generation of turbulent inflow 
conditions for the LES zone when it is located downstream a RANS domain 
is a particularly challenging issue and is discussed separately in Sec. 8.2 and 
Sec. 8.3. 

8.1.1.2 Restriction procedure from LES to RANS 

The restriction procedure characterized previously by the operator 0i-^2 
(see Eq. (8.3)) may be interpreted as an averaging-operator (i.e. a low-pass 
filter) to remove the frequencies corresponding to turbulent fluctuations: 

uRANS {^ANS,t) = (uLBS ( x ^ s , t ) ) n ( > t ) . (8.8) 

The treatment of the eddy viscosity is different if the RANS domain is 
located downstream or upstream of the LES domain. In the latter case, the 
feedback from the LES region to the RANS region is achieved by averaging 
the LES field to provide data for the RANS field boundary conditions whilst 
traditional RANS equations are solved for the turbulent variables and the 
eddy viscosity vt. 

In the case where the RANS zone is located downstream a LES domain, 
one has to reconstruct an eddy viscosity from the LES flowfield. As an 
example, the filtering process proposed by Nolin et al. [Nolin et al., 2005] 
is divided into two steps. Firstly the solution from the LES side is filtered 
both in time and space as follows: 

(ULES (xL
R

ES,t)) =--*— f uLE3{£,t)dt (8.9) 
QRANS JiiRANS 

where QRANS denotes the volume of the cell in the RANS domain and 
ULES (X> t) the space filtered aerodynamic field which in turn is time-
filtered: 

3 The averaging procedure can also introduce time averaging (then noted (») n t ) 
as in the works by Nolin et al. (2005), see Eq. (8.9). 
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— (RANS f n \ _ /— f^LES f n \ \ 

where the superscript •" refers to the instance tn and N is the number of 
time-steps over which the fields are integrated. Nolin et al. introduced the 
twice-filtered field URANS (xgj4WS',<) into the RANS equations to obtain a 
linear system on vt. In the framework of a finite volume formulation, the 
momentum conservation equation may be written as: 

2vtS.nds = MRANS
 dURANS + I (Ta - 2^S) .nds (8.11) 

6QHANS JdnRANS 

where S is the strain rate tensor, nds the surface vector of the cell interface 
and Ta the inviscid flux tensor. Note that the system is overdeterminated 
because the RANS eddy viscosity ut appears in the three equations rela­
tive to the velocity components. In addition, Nolin et al. indicate that a 
robustness problem may arise if the system is projected onto a direction 
in which the velocity gradients are very small. Therefore, they solve the 
linear system for the wall tangent velocity component yielding the high­
est gradients. These authors applied their method to a conventional plane 
channel flow as well as to a more realistic airfoil flow case and outlined the 
importance of the twice-filtering operation applied to the LES field. 

8.1.2 Perturbation approach: NLDE 

This approach, referred to as NLDE for Non-Linear Disturbance Equations, 
was originally developed by Morris et al. [Morris et al, 1997]. Here, the 
extension of this method to the case of a RANS/LES flow decomposition, 
as developed by Labourasse and Sagaut [Labourasse and Sagaut, 2002] is 
discussed. This hybrid RANS/LES technique represents a two-level partic­
ular case of the multilevel decomposition of the flow variables introduced in 
Sec. 2.5.1 as follows: here, the first (fine) representation level of the solution 
corresponds to the filtering approach, while the second one is related to an 
averaged representation of the flow. The following, two-level, decomposi­
tion is then considered: 

ULES = URANS + 8uR,L (8.12) 
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where, with reference to Chapter 2, uLEs = u ^ corresponds to the finer 

representation level (LES), URANS — u^2^1 to the coarser one, obtained 

by an averaging operator, and SUR^L = 5u^ is associated to turbulent 

fluctuations around the mean flow URANS, which can be computed with the 

LES approach. Here, it has been chosen to introduce these new notations 

instead of the more general ones u ^ , u^2\ and 5u^\ for the sake of clarity 

and consistency with the general topic of this chapter. We can notice tha t 

this two-level decomposition of the filtered velocity field also introduces a 

triple decomposition of the original (full) velocity field u as: 

u = URANS+ 5uR}L + u' (8.13) 

where u ' is associated to the (unresolved) subgrid scales. 

The aim of the NLDE approach is to reconstruct the turbulent fluc­

tuat ions around the mean flow URANS, which is considered to be known. 

For this, some evolution equations have to be derived for the fluctuating 

field SURL. Remarking tha t this quanti ty represents the detail between the 

two representation levels of the solution, its evolution equation is a partic­

ular case of Eq. (2.58). The set of the Non-linear Disturbance Equations 

describing the evolution of the turbulent fluctuations SUR^ is then: 

V. (SuR,L) = 0 

d _ _ 
Tr.duR,L + V. (5UR,L ® SuRtL + SUR:L ® URANS + URANS ® SuRyL) 

= - V 5 p H > L + vV25uR^L - V. {TLES - TRANS) 

(8.14) 

where, similarly to the velocity fluctuation 5uRtL, the pressure fluctuation 

is defined as 5pRtL = pLES - pRANs-

It is interesting to remark tha t the per turbat ion momentum equation 

can be re-written as: 

d _ _ 
—SuRiL + V . ((SuRtL + URANS) ® (5uR,L + URANS)) 

+\7(SpRiL + PRANS) ~ vV2(8uR,L + URANS) + V. (TLES) 

= V. (URANS <8> URANS) + ^PRANS ~ VV2URANS + V. (TRANS) 

(8.15) 

or, equivalently: 
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•^;SuRiL + V . (uLES ® ULES) + ^PLES ~ V^J2VLLES + V. {TLES) 

= V. (URANS ® URANS) + ^PRANS - VV2URANS + V. (TRANS) 

(8.16) 

where the RHS depends only on the mean field computed by RANS. It is 

to be noted here tha t , according to the Reynolds-Averaged Navier-Stokes 

equations (see Eqs. (2.24)) detailed in Chapter 2, this term theoretically 

vanishes in the case of a steady mean flow. It is however recommended to 

compute explicitly this term, in order to account for some possible conver­

gence and /o r discretization4 errors. 

Several properties have been highlighted by Labourasse and Sagaut 

when implementing and testing this approach (some plane channel flow 

computations were first carried out by the authors, considering several 

choices for the mean flow and several sizes of the computational domain). 

The most interesting one is certainly the ability of the method to deal 

with reduced domain size, due to the fact tha t the per turbat ion formula­

tion is less sensitive to the possible numerical errors arising at the domain 

boundaries. Following this idea, the authors have then proposed a zonal 

version of this method, which consists in reconstructing turbulent fluctu­

ations around a mean flow in some numerical subdomain only, in which 

an accurate description of the flow unsteadiness is sought. This may be 

the case for instance at the trailing-edge of a wing or blade profile, for an 

accurate description of the wake. The configuration is therefore treated in 

its major part with the RANS approach (the steady approach is retained 

by the authors) , while only small (reduced) par ts of the computational do­

main are t reated by the NLDE approach. This point is illustrated by Fig. 

8.4 in the case of the flow around a NACA0012 profile, and where only 

the trailing-edge region is t reated by three-dimensional NLDE (the overall 

configuration being treated by the 2D RANS approach) in order to get a 

description of the associated aeroacoustic sources. 

The main point tha t has to be addressed is the coupling between 

the global RANS and the NLDE regions. The associated problem is 

the definition of some appropriate boundary conditions at the interfaces 

4 The numerical schemes used for RANS computations generally differ from those used 
for LES. Since the NLDE system has to be solved with some numerical schemes which 
are well-suited for LES computations, a mean field URANS which was well converged 
in time during a RANS computation can however lead to a non-negligible convergence 
error with a different scheme. 
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Pig. 8.4 Use of the zonal NLDE approach in a NACA0012 configuration (Terracol, 
2005). 

of the NLDE region. While the mean flow can be simply defined by 

taking directly the corresponding values of the aerodynamic field com­

puted by RANS, a particular t rea tment is required for the turbulent 

fluctuations. In their works performed in the compressible flow case, 

Labourasse and Sagaut recommend the use of an extension of usual 

non-reflexive characteristic t reatments [Thomson, 1987a; Thomson, 1987b; 

Poinsot and Lele, 1991] to the perturbat ion formulation. This extension 

is detailed in [Sagaut et al., 2003], and the resulting hybrid approach was 

applied successfully by the authors to the numerical simulation of some re­

alistic industrial cases such as the trailing-edge region from a low-pressure 

turbine blade, or the slat cove region of a three-element high-lift wing pro­

file. 

However, as it is also highlighted by the authors, this numerical t reat­

ment does not allow to account for some turbulent flows at the inflow 

interface of the NLDE region. As it is the case for all the zonal RANS/LES 

approaches, a particular t reatment has to be added to generate explicitly 

some turbulent fluctuations in such cases. A survey of some possible ex­

isting methodologies to generate appropriate turbulent fluctuations at the 

inflow of a NLDE (or more generally LES) region is carried out in Sees. 8.2 
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and 8.3 of the present chapter. It is to be noted that this point repre­
sents certainly the main challenge to be met to ensure the applicability of 
zonal RANS/LES approaches to the simulation of turbulent flows in general 
configurations. 

8.2 Inlet Data Generation — Mapping Techniques 

The URANS modelling approach is based on a scale separation (or spectral 
gap) between the unsteadiness of the mean field and the turbulent field 
(see Sec. 7.3). Therefore, the quantities being computed in (U)RANS are 
steady (or vary on a time scale much longer than the computational time 
step) and do so in a deterministic manner (rather than random) so that 
inlet quantities are well defined. In contrast, LES does not exhibit such a 
scale separation and thus requires a specific treatment to resolve large-scale 
turbulence in space and time. 

In the LES mode of hybrid methods, the unsteady three-dimensional 
energy-carrying eddies are resolved. Hence, the velocity specified at the in­
flow of the computational domain should ideally represent the contribution 
of these eddies. For an incompressible flow, these structures can be charac­
terized as a time dependent velocity vector function of two-space directions, 
satisfying a prescribed spectrum as well as given first and second order mo­
ments, along with the appropriate phase correlation between modes. This 
latter information is the most difficult to specify since it is related to the 
shape of the turbulent eddies, or in other words, to the structure of tur­
bulence which is highly flow-dependent. Without this correct structural 
information, the calculation requires a transition region where the turbu­
lent eddies evolve until the correct phase information is reached. Batten, 
Goldberg and Chakravarthy [Batten et al., 2004] introduced the acronym 
of Large Eddy STimulation (LEST) to qualify the process that generates 
the large scale eddies needed to form the unsteady boundary condition at 
the RANS/LES interface. 

The choice of the method to specify this inflow condition is problem 
dependent and various techniques can be used: 

• generate inlet data from another precursor simulation, see Sec. 8.2.1 
• dedicate a part of the computational domain to the use of a recycling 

methods, see Sec. 8.2.2 
• superimpose synthetic fluctuation on the mean velocity profile, see 

Sec. 8.2.3. 
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The topic of inlet data generation is now growing rapidly and these 
methods are therefore discussed further in the following sections. The use 
of synthetic turbulence reconstruction is discussed separately in Sec. 8.3. 

8.2.1 Precursor calculation 

An accurate way to generate inlet data description consists in retrieving 
them from a precursor simulation. In practice, the velocity field in a plane 
normal to the streamwise direction is stored at each time step. The sequence 
of planes is then used as inflow data (e.g. unsteady Dirichlet conditions) 
for a separate calculation of the flow of interest (see Fig. 8.5). Despite its 
accuracy, this technique implies a heavy extra computational loads and is 
restricted to simple cases (see [Kaltenbach et al., 1999] for an example of 
application). 

A variant of this method for hybrid RANS/LES simulations has been 
developed by Schluter, Pitsch and Moin [Schluter et al., 2004] in the case 
where an LES domain is located downstream of a RANS domain. 

This method uses the mean velocity field from the RANS solution and 
adds turbulence extracted from a pre-generated database (referred to as 
DB) created by an auxiliary LES computation as follows: 

U(i),LEs{t) = u~(i),RANS + u'(i^DB{t) i = 1,2,3. (8.17) 

Turbulent fluctuations u,^ DB are extracted from the data base and then 
rescaled to match required statistics (e.g. mean velocity field and rms fluc­
tuations) of the target RANS field as follows: 

U(i),LEs(t) = U(i)iRANS + [u(i),DEi{t) - U(i),DEl] , ' (8.18) 

V«' (i),DB 

Indeed, taking the ensemble average of Eq. (8.18) leads to U(i)tLES = 
^(i),RANS whereas subtracting u^RANS from both sides of Eq. (8.18) 

before taking the square and the ensemble average yields u (i)tLES = 

u u)tRANS- It is also assumed that the axial components of the Reynolds 

tensor u (i)tRANS a r e known quantities. However, most RANS models do 
not compute the single components of the Reynolds stress tensor but more 
general turbulent quantities such as the turbulence kinetic energy kaANS-
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INLET 

PRECURSOR SIMULATION 

Fig. 8.5 Sketch illustrating a database lookup technique in which a previous computa­
tion is used to provide inlet data. 

uXt) •mmmmmmmm7V77?Twwv 

Fig. 8.6 Sketch illustrating the interface and boundary condition of an integrated 
RANS/LES. The inlet velocity profile in the RANS region are prescribed according 
to the available experimental data. The LES inflow boundary condition are obtained 
by the LES solver which provides the inflow velocity profiles that match the statistical 
properties yielded by the RANS velocity profile. Courtesy of J. Schliiter, CTR, USA. 
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Assuming homogeneous isotropic turbulence, the normal stresses of the 
Reynolds tensor can be recovered by: 

2 
U (i),RANS = ^kRANS- (8.19) 

Schliiter et al. [Schliiter et a/., 2005] applied their method to simulate the 
complex flow path of an entire gas turbine. Compressor and turbine are 
computed in RANS mode and the combustor with LES (see figure 8.7). 

Fig. 8.7 Integrated RANS-LES of compressor/prediffuser. The vorticity distribution 
highlights the wakes of the stators in the RANS domain whereas the vorticity distribution 
in the LES domain is characterized by small scale turbulence. This small scale turbulence 
has been reconstructed explicitly using the LES inflow boundary condition. Courtesy of 
Jorg Schliiter, CTR, USA. 

The precursor simulation is assumed to provide realistic scales but does 
not need to be, a priori, in the same configuration as the real LES calcula­
tion of interest. Schliiter, Pitsch and Moin [Schliiter et at, 2004] outlined 
that the scaling of Eq. (8.18) is linear and that it is recommended to repro­
duce the expected inlet conditions as closely as possible in order to keep the 
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approximation in the bounds of validity of a linear approximation. Little is 

known about the effect of a scaling factor significantly different from unity 

tha t occurs when the database is very different from the target turbulent 

flow field. To get a bet ter knowledge of this issue, Keating et al. [Keating 

et al, 2004] created a database using a periodic simulation of a channel 

flow at a Reynolds number based on the channel half-height Re = 2280. 

This database was then rescaled to match first and second order statistics 

of channel flow at Reynolds number Re = 6900. Using a rescaling simi­

lar to tha t given by Eq. (8.18), the skin friction coefficient as well as the 

the Reynolds shear stress were recovered ten boundary layer (10(5) thick­

nesses downstream from the inlet, whereas 155 were necessary to recover 

the turbulent kinetic energy. 

8.2.2 Recycling methods 

For incompressible spatially developing boundary layers, Lund, Wu and 

Squires [Lund et al., 1998] developed an approach where the simulation 

generates its own inflow conditions. Their method consists in taking a 

plane from a location several boundary layer thicknesses S downstream of 

the inflow. These da ta are then rescaled and reintroduced at the inflow 

(see Fig. 8.8). This assumes the accepted scaling laws for mean flow and 

fluctuations of the flat-plate boundary layer. 

The idea is to decompose each flowfield into a mean and a fluctuating 

par t and then apply the appropriate scaling law to each one separately. A 

velocity component m (x,y,z,t) is decomposed as the sum of an average 

in the spanwise direction and in t ime Ui (x, y) and a t ime fluctuating par t 

u{ (x, y, z, t) according to: 

ui {x, V, z, t) = Ui (x, y, z, t) - Ui (x, y). (8.20) 

For the sake of simplicity, we denote the streamwise, wall-normal and span-

wise velocity components by u\, u-i, «3 and the corresponding coordinates 

are x, y, z. 

In the recycling method, the inner and outer layers of the boundary 

layer are rescaled separately (index re) to account for the different similarity 

laws tha t are observed in these two regions. Both layers can be linked with 

those at the inflow (index inf) thanks to the following relations for the 

inner region: 
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Fig. 8.8 Sketch illustrating a recycling technique in which data from an interior plane 
is mapped backwards to the inlet. 

^rer){mf)=Hui)(re){ytmf)) 

= 0 -inner \ 
i 3 > {inf) 
,inner\ n I 

fe(in/)-*>*) (inf) \ I (rec) 

and for the outer region: 

«Uter){mf) = -9 («!)(«) i.V(inf)) + (1 " P) U0 

' .outer 

I (inf) 

yinj) \ / (rec) 

(8.21) 

(8.22) 

(8.23) 

(8.24) 

(8.25) 

(8.26) 

(8.27) 

(8.28) 

The rescaling factor p1 is the ratio of friction velocities respectively at the 
inlet station and at the recycled station: 

P = 
lT,(inf) 

.29) 
u. T,(re) 
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In the above relations, ytinf\ and rj(inf) a r e the inner and the outer coordi­
nates at the inlet stations: 

y(inf) 
yUT,(inf) 

V(inf) 
°{.inf) 

(8.30) 

Complete velocity profiles valid over the entire inflow boundary layer are 
obtained by a weighted average of inner and outer profile5: 

)(inf) (-")(»/)+(«; , iBner) 

+ l(inf) 

(inf) 

,outer 

i-wfa™/))] 

•W {Viinf)) • 

The weighting function W is defined as: 

W(r?) 
1 

1 + tanh 4 (*?-&) 
( 1 - 2 6 ) + 6 

( in/) 

/ tan (4) 

.31) 

(8.32) 

where 6 = 0.2 to provide a smooth transition at y/5 = 0.2. 
It has to be noted from Eqs. (8.29) and (8.30) that the rescaling opera­

tion requires the knowledge of the skin friction velocity uT and the boundary 
layer thickness 5, both at the rescaling station and the inlet plane. These 
quantities can be determined from the mean velocity profile at the rescal­
ing station, but they must be specified at the inflow position. Lund et al. 
(1998) proposed to impose 5 at the inflow and to evaluate uT as follows: 

lr,(inf) r,(re) 
V{re) 2 ( n - l ) 

,33) 

where 0 is the incompressible momentum thickness and the exponent n is 
set to 56. 

Xiao et al. [Xiao et al., 2003] rescale only the fluctuating components of velocity. 
In other words, the new profiles at the inlet are obtained by superimposing the recycled 
fluctuating component onto the mean component. This velocity profile remain fixed 
throughout the simulation and is extracted from an initial RANS calculation. 

Other solutions have been proposed in the literature (see Sagaut et al. [Sagaut et al., 
2004] for a review). As an example, Urbin and Knight [Urbin and Knight, 2001] derived 
from a power law U/Uoo (y/8) i t n e variables /3 and Srrec\/Srint\ as follows: 

P = 
Sre 

\inf) 

"(rec) 6 i n - i 
1 + 0.275—£S_-fce s 

u(inf) 

(8.34) 

where TZe^in^ is the Reynolds number based on the inflow boundary layer thickness and 
LR is the distance between inflow and recycle planes. 
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Spalart, Strelets and Travin [Spalart et al, 2005b] proposed a simplified 
version of the rescaling method of Lund et al. [Lund et al, 1998] which 
consists in rescaling the velocity field only in the wall-normal direction. 
Their interest is in keeping the distance from inflow plane to recycling 
plane as short as possible, so that differences in uT are very slight. They 
also argue that the eddies in the inner-layer are re-generated rapidly, so that 
is is not essential to scale them exactly. Let the boundary layer thicknesses 
at the inflow station x = Xunf) and rescaling station x = X(rec) be 5/inf, 
and 5(Tec\. Spalart et al. proposed the following single inflow condition for 
the velocity vector: 

( \ ( fi(rec) \ 
u{xrinf),y,z,t) =u [x{rec),y- ,z + rjz,t (8. 

V d(inf) J 

35) 

where the spanwise shift r\z is introduced to keep turbulence at the inlet and 
recycling stations out of phase. In their DNS of an eddy break-up device in 
a boundary layer, the authors set the value of r\z equal to half the spanwise 
period and the recycling plane was located less than 5 S downstream of the 
inflow plane. 

The recycling approach has been successfully used in previous Direct 
and Large Eddy Simulation but not so many publications arc devoted to 
its use in hybrid RANS/LES simulations. 

Xiao et al. [Xiao et al, 2003] used the k — C (enstrophy) two-equation 
model [Robinson and Hassan, 1998] in the URANS region and blended it 
into a one equation model in the LES region (see also Sec. 7.4.3). Their 
approach differs from standard LES because of the existence of two addi­
tional RANS equations for k and C,. These authors derived new similarity 
laws to rescale the turbulent variable. Because u scales with uT in both in­
ner and outer regions, the turbulent kinetic energy k scales with u^. leading 
to: 

( dinner \ o2 ( r,inner\ 
\K )<inf) ~ P \K )( 

(kOUter)(mn=02(k°uter)(recy (8-36) 

( i n / ) ' V I (rec) 

) = p 2 ( k O U t e r ) , , 
'(in}) ' \ ' (rec) 

Then, the eddy viscosity in the log layer is given by: 

vi = XUTy with \ = 0-41 (8.37) 

whereas the eddy viscosity provided by the k — ( RANS model reads as: 

k2 

vt = Cu— with C' = 0.09. (8.38) 
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Hence, Xiao et al. proposed (in the frame of compressible flow) the following 
scaling for the £ variable: 

A \ inner / .. 
VVWC,\ _ VVyjQ 

c- A \ outer / i- u\ outer 
ovwQ\ I bvwQ 

(inf) \ UT / (rec) 

(8.39) 
(inf) \ ar J (rec) 

It can be seen looking at Eqs. (8.36) and (8.39) that only the mean part 
of the turbulent quantities are rescaled and recycled. In a later work [Fan 
et al, 2004], both mean and fluctuation parts of the turbulence quantities 
are rescaled according to: 

<%n/) = <f>(rec) [y(inf)) > <%«/) = ^(rec) {^(inf)) 

tjn7fr = 4(reC) ( ^ „ / ) ) . 4$ff = 4(rec) (»7(i„/)) (8-40) 

where <f> and (p denote respectively the mean and time fluctuating parts 
of any turbulent quantity 4> {4> = k and/or w,...). The new profiles of the 
turbulent variables are obtained by an expression similar to Eq. (8.31). 

The recycling-rescaling method was originally developed for flat plate 
boundary layers and it may face considerable problems in more complex 
geometries. In addition, it is to be noted that the main difficulty relative 
to recycling methods remains to initiate the recycling process. In general, 
a secondary turbulent boundary layer simulation has to be used to provide 
some appropriate perturbation. Moreover, such a process may introduce a 
non-physical recycling frequency (/& = kUtx/LR where LR is the distance 
between inlet and recycling planes) due to the artificial streamwise peri­
odicity introduced in the simulation, which depends on the location of the 
recycling planes (see for example [Kannepalli et al, 2002]). These artificial 
periodicities can be broken by adding additional random noise at the inlet. 

Spille-Kohoff and Kaltenbach [Spille-Kohoff and Kaltenbach, 200l] pro­
posed a method which is a variant of the recycling-rescaling approach along 
with random inflow generation data but a number of control planes are 
placed a short distance downstream of the inlet. At each of these planes, a 
controller is introduced that amplifies the wall-normal velocity fluctuations 
through the use of body forces in the wall-normal momentum equation 
to match a target Reynolds shear stress provided by experiments or by a 



Zonal RANS/LES Methods 303 

RANS model.7 Keating et al. [Keating et al, 2004] successfully applied 
this forcing method including a control loop in the case of channel flow. 
Indeed, these authors obtained the correct Reynolds stresses within less 
than ten channel half-heights. 

8.2.3 Forcing conditions 

The main difference between global hybrid methods (see Sec. 7.4) and 
zonal methods is that global methods generally aim at covering the whole 
attached boundary layer (to avoid grey-area drawbacks, see Sec. 7.4.5) 
whereas zonal methods aim at covering only the inner-part of the bound­
ary layer with URANS. This change of degree in the resolved equation 
within the boundary layer brings in the problem of the interface treatment 
between the inner-layer treated in RANS8 and the outer one provided by 
LES. Hanjalic et al. [Hanjalic et al., 2004] recalled that most hybrid meth­
ods suffer from the difficulty of reconciling the conditions on both sides 
of the RANS/LES interface and introduced the idea of "seamless coupling 
strategies" between URANS and LES. Nevertheless, the current experience 
of using weak RANS/LES coupling methods (see Sec. 7.4.5) shows that it 
is not enough just using RANS in the near-wall region in order to get good 
results in the LES region. In other words, additional conditions are needed 
at the interface. 

Therefore, Dahlstrom and Davidson [Dahlstrom and Davidson, 2003], 
Dahlstrom [Dahlstrom, 2003], Davidson and Billson [Davidson and Bill-
son, 2004] proposed to add instantaneous fluctuations to the momentum 
equations at the LES side of the interface to feed the LES region with 

Indeed, let us briefly recall for sake of simplicity the production term in the Reynolds 
shear-stress budget for a two-dimensional flow (see [Piquet, 1999] for a complete presen­
tation): 

One can notice from Eq. (8.41) that the decrease of the shear stress which in turn 
decrease the production of TKE is highly influenced by the decay of v v . Therefore 
Spille-Kohoff and Kaltenbach [Spille-Kohoff and Kaltenbach, 2001] proposed to add a 
source term in the wall-normal momentum equation so that the Reynolds stress u'v' (y) 
reaches a prescribed profile. This source term acts simultaneously in several (x — z) 
planes which are O (1) 5 apart in the streamwise direction. 

8Wall-layer modelling is still a serious problem for LES. An exhaustive review of 
existing wall-models is beyond the scope of this chapter but the reader can consult 
discussions in the papers by Piomelli and Ballaras [Piomelli and Balaras, 2003], 
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relevant turbulent structures. The RANS/LES interface is located in the 

inner par t of the logarithmic region (i.e. around 30 and 60 wall units away 

from the wall, see Fig. 8.9). These fluctuations may be either synthesized 

(see Sec. 8.3) or taken from a DNS of a generic boundary layer (see 

Sec. 8.2.1) and are added as momentum sources in the cells adjacent to the 

RANS/LES interface. The forcing term has to mimic physical turbulent 

fluctuations and therefore should force the momentum equations to star t to 

resolve large-scale turbulence. The source terms for the three momentum 

equations read as: 

Su = -"iuavaAn, Sv = --fvavaAn, Sw = -~fwavaAn (8.42) 

where An is the area of the LES cell facing the interface plane as illustrated 

in Fig. 8.9 and 7 is a scaling function which is the ratio of the local modelled 

turbulent kinetic energy k^ANS and the turbulent kinetic energy of the 
1 (~7"2 ~ r 2 — r 2 \ added fluctuations kfiuct = ^ ( ua + v'a + w'a j and 7 is given by: 

1 {%> l/interface^ Z? *) = c 7 ~7 \Xi Viriter facet z> t) (o.4oJ 
Kfiuct 

where c 7 is an arbitrary constant taken as 0.4 and 1 by the authors. The 

RANS kinetic energy is provided by a one-equation model: 

1 % ®k C^. (8.44) 

This model is used in both URANS and LES region (i.e. outer region 

V > Vinterface) and in the LES region where it corresponds to the subgrid-

scale kinetic energy (ksGs)- The turbulent length scale £ and eddy viscosity 

vt are different in the two regions9 (see Table 8.1). 

9 Note that no interface condition is used in the fc-equation to ensure the continuity of 
the eddy viscosity at the interface. Conversely, Temmerman et al. [Temmerman et at, 
2004] computed dynamically the C^ coefficient appearing in the RANS turbulence model 
to yield a smoother transition between the URANS and LES regions since these authors 
used a k — e model in the URANS region coupled with a subgrid scale model in the LES 
region. With an eddy viscosity given by ii^ANS

 = f^Q^h_^ matching the subgrid scale 
eddy viscosity v\'ES at the interface implies: 

_ (4ES) 
^ u, inter face — ~< 7TT~ (o.4o) 

where {•) denotes averaging over any homogeneous direction. The smooth transition 
from the traditional RANS value C^ = 0.09 to the interface value C^^nt^f^j, is achieved 
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4 
Fig. 8.9 Added fluctuations in a control volume in the LES cell adjacent to the 
URANS/LES interface. Adapted from Davidson and Billson (2004). 

thanks to the empirical exponential function (see [Temmerman et al., 2004]): 

CM = 0.09 + ( C M , m t e r / a c e - 0.09) 1 - exp (~y/A) 

- exp (-Vinterface/A) 
1.46) 

where A = (AxAyAz)s and yinterface refers to the distance from the prescribed in­
terface to the wall (see Fig. 8.9). At this stage, it is worthwhile to recall that the value 
CM = 0.09 plays a key role in determinating the slope of the modelled logarithmic layer 
(contained in the RANS model) near the wall (see Eq. (7.15)). In other words, changing 
the standard value issued from scaling of flows in statistical equilibrium may corrupt 
the properties of the attached boundary layer (see Sec. 7.3.2) and raises the problem 
of Log-Layer-Mismatch (see Sec. 7.4.5) between the modelled inner-part of the log-layer 
and the resolved logarithmic layer provided by LES in the outer part of the boundary 
layer. In the case where no LES content is added in the outer part of the boundary 
layer, Temmerman et al.'s approach can be considered as a global hybrid approach (see 
Fig. 7.2) and therefore needs a careful monitoring of the grey-area (see Sec. 7.4.5). 
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Table 8.1 Parameters of the one equation model used by Davidson 
and Billson (2004) for both URANS and LES regions. dw denotes 
the distance to the wall 

c 

vt 

ce 

URANS (y < Vinterface) 

2.5dw [l - exp (-Q.2ki ^f )] 

2.5kidu, [l - exp (-OMAki ^)] 

1 

LES(y > Vinterface) 

A = ( A ^ A J S 

0.07/c5A 

1.07 

The fluctuations prescribed at the inlet interface are transformed along 

the streamwise evolution of the interface at each time-step using an as­

sumption of "frozen turbulence" (i.e. Taylor's hypothesis): 

' \ ' f ( X — XQ 
^z,a V^' Vinterface: %-i t) w i ,a I *̂ 0> Vinterfacei %•, ^S I £ ~pz 

V V {^interface 
(8.47) 

where XQ denotes the location of the inlet and (uinterface) the mean velocity 

component at the interface averaged both in t ime and over any homoge­

neous direction. Ms is a parameter tha t can be used to artificially increase 

the streamwise turbulent length scale of the added fluctuations. 

Dahlstrom and Davidson [Dahlstrom and Davidson, 2003] used their 

method to simulate a fully developed channel flow and plane asymmetric 

diffuser flow. To generate the fluctuations needed in Eq. (8.42), a DNS of 

channel flow at ReT = 500 was used. Instantaneous da ta of the velocity 

components at plane XQ are stored on disk. These authors advocate tha t 

these DNS da ta can be used for forcing at the interface for a wide range 

of boundary layers since the inner structure of the log-law region depends 

only weakly on the Reynolds number. They found tha t the interface con­

dition improves results considerable (velocity and turbulent kinetic energy 

profiles) compared to the case without forcing submitted to grey-area prob­

lems (see Sec. 7.4.5). 

8.3 Turbulence R e c o n s t r u c t i o n for Inflow C o n d i t i o n s 

The inflow methods relying on synthetic turbulence generations are based 

on the assumption tha t turbulence can be specified by using only low order 

statistics (mean velocity, spectra) . An early proposal for the generation 

of synthetic turbulence was given in the paper by Kraichnan [Kraichnan, 
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1969] in his work on diffusion by a random velocity field. His proposal 
was based on a sum of Fourier modes and was limited to frozen isotropic 
turbulence. The topic of synthetic turbulence generation is now growing 
rapidly. 

8.3.1 Random fluctuations 

The simplest approach is to superimpose random noise on the inlet mean 
velocity profile. Nevertheless, one of the most significant aspect of turbu­
lence is its spatial and temporal coherence in the long wave range quantified 
by the integral and Taylor scales (see Chapter 1). Indeed, the larger scale 
turbulent eddies initiate the cascade of turbulent kinetic energy from large 
to small scales. A random noise inlet condition suffers from a lack of cor­
relation in both time and space. As a result, these random fluctuations 
lie usually in the high wave number part of the kinetic energy spectrum 
and are very quickly dissipated, without sustaining real turbulence. The 
flow relaminarizes quickly downstream the inlet plane (see [Schliiter et al., 
2004]). A further improvement might be a white noise signal that would 
reproduce the single point statistics. 

8.3.2 Inverse Fourier transform technique 

A classical approach for the generation of synthetic inflow data is to pro­
duce a velocity signal which has certain statistical properties (mean and 
fluctuating values, energy spectra). 

To this end, the proposal of Lee, Lele and Moin [Lee et al, 1992] is 
based on an inverse Fourier transform of the velocity field. For the sake 
of simplicity, we illustrate this approach by a one-dimensional example. 
Therefore, let us consider a discrete signal Uk in physical space. Its discrete 
Fourier transform defines uniquely the corresponding un in the Fourier 
space: 

Uk= N X ^ ™ e x p ( 2 M r f c ] v " ) ' n = 0 ' - - A f - 1 (8-48) 
n=0 

where un are complex numbers which can be written as: 

un = \un\ exp (i$n), i2 = - 1 (8.49) 

where \un\ and 3>n G [0;27r] are respectively the modulus and the phase 
angle of the complex wave number un. The Parseval relation which states 
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the conservation of the energy of the signal in both physical and Fourier 
space (thus providing a connection between \un\ and the energy spectrum 
E (n) = \unu*n) yields: 

N-\ -. J V - 1 N-l 

£ EW = 2N ^ ^ = 2 E l^l2 • (8-5°) 
n=0 n=0 fe=0 

Consequently, if one chooses a random phase angle i>„ as well as 
a prescribed spectrum E(n), an inverse Fourier transform of un (with 
\un\ = ^2E(n)) produces a velocity Uk with the prescribed spectrum 
E(n). Note that the signal obtained from the above procedure is peri­
odic in time. Therefore, Lee and coworkers modify the phase angle $„ 
at a random instance by a small amount A$„ (sometimes referred to as 
phase jittering technique10). However, the extension of this method in the 
three-dimensional case is relatively complex11. Indeed, in three-dimensional 
turbulence, significant amounts of energy are transferred in both directions 
in terms of wave numbers and not so many experiments provide nowadays 
the three-dimensional energy spectrum. Therefore, Lee et al. used the 
following model spectrum: 

E(K) ~K4exp(-2 (— J ) , K= {KX + KI + KIY (8.52) 

where Ke is the peak wave number in the energy spectrum which cannot be 
chosen uniquely. 

As an example, Le, Moin and Kim [Le et al., 199.7] performed a DNS 
of a backward facing step flow at a Reynolds number of Reh =5100 based 
on the step height h and inlet free-stream velocity. The time-dependent 
velocity described at the inflow consists of a mean velocity profile obtained 
from Spalart's [Spalart, 1988] boundary layer simulation to which random 

In Fourier space, one can also change the amplitude of the original energy spectrum 
£ ( * ) : 

E (K) = E (K) (1 + e) (8.51) 

where e is a random number of fixed magnitude, before performing the inverse Fourier 
transform of E («;) to provide fresh data. Conversely to Lee et al's technique [Lee et al., 
1992], this method is referred to as an amplitude jittering technique. Both methods were 
compared by Chung and Sung [Chung and Sung, 1997]. These authors indicate that 
for wall bounded flows, amplitude jittering may be more efficient than phase jittering 
because flow structures (i.e. phase information) are not destroyed in the former. 

It can be noted that the use of the Fourier transform introduces some additional 
constraints since the grid has to be cartesian and equidistant. 
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fluctuations with given moments and spectra were superposed. These au­
thors used the above method of Lee, Lele and Moin [Lee et al., 1992] to 
generate velocity fluctuations at the inlet which ensures that the result­
ing inlet signal does not contain excessive small-scale motion (analogous to 
random numbers, see Sec. 8.3.1) and that the peak in the spectrum corre­
sponds to well-resolved wavelength. However, Le, Moin and Kim [Le et al., 
1997] found that the flow looses its statistical characteristics some distance 
downstream of the inflow although Lee et al's procedure produces a set of 
stochastic inlet data that satisfies a prescribed set of second-order statis­
tics. Finally, their calculation required an inlet domain with a length of 
ten step heights (e.g. a third of their total domain length) to recover the 
targeted turbulent characteristics. The authors attributed this transition 
to the structureless inlet turbulence which was a result of the randomized 
phase angles in Lee's et al method (1992). 

Instead of using the inverse Fourier transform, Klein, Sadiki and Janicka 
[Klein et al., 2003] introduced a method which is based on digital filtering 
of random data that is able to reproduce a prescribed set of second order 
statistics as well as auto-correlation functions. Their method was shown to 
give satisfactory results in plane jet simulations. 

8.3.3 Random Fourier modes synthesization 

A time-space turbulent velocity field can also be generated using random 
Fourier modes. This basic idea was suggested by Kraichnan [Kraichnan, 
1969] in 1969 and has since gone through various stages of refinement. 

Davidson [Davidson, 2005] prescribed the time space velocity field as 
follows: 

JV 

u- (Xj) = 2 Y^ un cos (K%XJ + <pn) a? (8.53) 
71 = 1 

where un, Kj, 4>n, <r™ are respectively amplitude, wave number vector, phase 
and direction of Fourier mode n. 

The amplitude of each mode un is given12 by: 

un = y/E(\K?\)AK (8.54) 

where the energy spectrum is taken as a modified Von Kdrmdn spectrum: 

1 2Note that the turbulent kinetic energy is given by k = \ X) n =l ("") • 
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E{K) 
{K/K£) 

1 + (K/K,B)2 

exp (8.55) 

where KK = e 3 ^ " 3 is the Kolmogorov wave number and Kr is the most 
energetic length scale (see Fig. 8.10). Davidson and Billson [Davidson and 
Billson, 2004] divided linearly the spectrum into 150 intervals. 

The wave number vector components K^ are chosen randomly on a 
sphere and the phase of each mode is chosen with uniform probability be­
tween 0 < <pn < 2n. The direction of each mode af is obtained under the 
incompressibility assumption since continuity requires: 

Vn 1.56) 

This procedure produces at each time step a set of stochastic inlet data 
that satisfies a prescribed spectrum but lacks temporal correlation. There­
fore, Davidson [Davidson, 2005] introduced a time correlation at instant 
tm through a linear interpolation of the running average (e.g. instant i1 

to t171"1). To create correlation in time, new fluctuating velocity fields are 
computed as: 

( , \ m / , \ m — 1 / , \ m 

ui) =a\Ui) +b{Ui) , a = exp 

At 
3.57) 

where tm denotes instant mAt where At is the computational time step 

and b = (1 — a2) . The time correlation of Ui is equal to exp I — ^ 1 
where the time scale Tt is proportional to the turbulent time scale k/e. 

The turbulent velocity field is finally prescribed as: 

ui(Q,y,z,t) = Ui(y)+\Ui} 

where the mean velocity field is set as U2 = E/3 = 0 and 

+ y+ < 5 
U+ = { -3.05 + 51n(y+) 5 < y+ < 30 

i ln(y+) + 5.2 y+ > 30. 

3.58) 

.59) 

Davidson [Davidson, 2005] applied this method for hybrid RANS/LES 
(see Eq. (8.44)) of channel flow at ReT = 2000 using different sets of length 
and time scales of the inlet fluctuations. He also evaluated the ability of 
the method in the case of periodic streamwise boundary conditions as well 
as in the case of inlet-outlet boundary conditions. 



Zonal RANS/LES Methods 311 

Log{E(K)) 

W 

K' 

AK 

LO^K) 

N modes equally large; /I* 

Fig. 8.10 Modified Von Kdrmdn spectrum (the N modes are equally distributed). The 
largest wave number is given by the mesh resolution Kmax = 27r/2A and smallest wave 

number is given by (K e /p)p>i where Ke = gff-, Lt = C^j—, C = 3. The factor p is 
chosen greater than one to make the largest scale larger than those corresponding to ree-

The velocity profiles with and without forcing are presented in Fig. 8.11 

in the case of periodic streamwise boundary conditions. One can notice 

tha t the agreement of hybrid RANS/LES with forcing is excellent whereas 

without forcing the velocity profile suffers Modelled-Stress-Depletion (see 

Sec. 7.4.5). In the case of inlet-outlet boundary conditions, Figs. 8.12 and 

8.13 able one to evaluate the effect of the t ime scale T* since the turbulent 

length scale is set to Lt = 0.11(5. It can be seen tha t in case with no time 

correlation, the resolved turbulence is dramatically reduced. Therefore, 

Davidson concluded tha t the time scale is as important as the length scale. 

Furthermore, he added tha t inlet and length scales should not be equal to 

the correct, physical values, but should be related to the grid. 

Smirnov, Shi and Celik [Smirnov et al, 2001] proposed the idea of a ten­

sor scaling based on scaling transformations of the Reynolds stresses that 

allows to generate flowfield representing turbulent velocity fluctuations. In­

spired by them, Batten, Goldberg and Chakravarthy [Batten et al.. 2004] 

introduced a simplified alternative to Smirnov et aVs method to gener­

ate synthetic turbulence tha t is based on the superposition of sinusoidal 

modes with random frequencies and wave number with given spectra. Their 
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(a) (u) profiles, o: 2.5ln(y+) + 5.2 (b) Shear stresses. Thick lines: resolved; 
thin lines: modelled. 

Fig. 8.11 Mean velocities and shear stresses. Streamwise periodic boundary conditions. 
Solid lines: forcing with isotropic fluctuations with Mg = 0.25; dashed lines: no forcing. 
Reynolds number ReT = ~^- = 2000. Mesh 32 x 64 X 32 (streamwise, wall-normal, 
spanwise). Domain: 4?r X 2 x 27r. Grid spacing: (Ax+, Ay+, Az+) = (785, [1 -292 ] , 393) 
Courtesy of L. Davidson, Chalmers University of Technology, Sweden. 

Fig. 8.12 Mean velocities and shear stresses. Inlet-outlet boundary conditions. Length 
scale: Lt = 0.116. Time scale: Tt = 0.225/uT. Solid line: x/8 = 7.3; dashed line: 
x/8 = 15.2; dash-dotted line: x/8 = 22.9. Mesh 64 x 64 x 32 (streamwise, wall-normal, 
spanwise). Domain: 87r X 2 x 27r. Grid spacing: (Ax+, Ay+, Az+) = (785, [1 -292 ] , 393) 
ReT = 2000. Mean inlet velocity from log-law. Fluctuating velocities from isotropic 
synthetic turbulence with turbulent length scale Lt and time scale Tt. Courtesy of L. 
Davidson, Chalmers University of Technology, Sweden. 
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Fig. 8.13 Mean velocities and shear stresses. Inlet-outlet boundary conditions. Length 
scale: Lt = 0.115. Time scale: Ti = 0. Solid line: x/S = 7.3; dashed line: x/S = 
15.2; dash-dotted line: x/5 = 22.9. Courtesy of L. Davidson, Chalmers University of 
Technology, Sweden. 

reconstruction procedure requires, as input, the local Reynolds stress tensor 
u'jUj as well as the length and time scales of turbulence (denoted respec­
tively as £ and r) which can be extracted from the available RANS data. 
Indeed, the scales £ and T as well as the velocity scale U can be calculated 
from the turbulent kinetic energy k and the turbulent dissipation rate s as 
follows: 

U '2k, k-, c 
e 

U.T. (8.60) 

The synthetic turbulent fluctuation field ui is reconstructed by a tensor 
scaling: 

UikVk (8.61) 

where a,js is the Cholesky13 decomposition of the local Reynolds stress 

1 3 The Cholesky factorization expresses a positive definite symmetric matrix as the 
product of a triangular matrix and its transpose : 

A = R T R (8.62) 

where R is an upper triangular matrix. As an example, Lund et al. [Lund et al., 1998] 
proposed the following transformation: u, = Ui + aijVj with Vj = 0, n[vj 
reads: 

y/Rn ° ° "* 
0 (a,xj)= R2l/

ai -^22 a 2 1 

R. " 3 l / a l l (-^32 a 2 1 a 3 l ) / a 2 2 \j J T q o U q i w' 32 / 

a.jj can be considered as a Cholesky decomposition of the correlation tensor Rij. 
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tensor and Vk is an intermediate velocity field defined as a sum of N sines 

and cosines with random phases and amplitudes: 

IT N 

Vi (Xj,t) = y — J2 [Pi cos {VjZj + unt) + q? sin (kpj + ujni)} 
n—1 

5.63) 

where 

Xj=2ir^- ; £ = 2 T T - ; w" = A/"(l, 1) (8-64) 

are spatial coordinates normalized by the length and time scale of turbu­

lence and w™ are the random frequencies taken from a normal distribution 

J\f (fi, a) of mean /i and s tandard deviation a. The amplitude of cosines 

and sines are given by: 

p? = eijfcC?KJJ, tf = e«fcC>fe, C r = A A ( 0 , l ) (8.65) 

where e^i, is the so-called al ternator1 4 and re™ = H; are modified wave 

numbers obtained by multiplying the wave numbers KJ> = M (0, | ) taken 

from a normal distribution with variance | , by the ratio of the velocity 

scale U to c" given: 

n Kn 
l—^- (8.66) 

*k"k 

c™ is an anisotropic scale taken as a tensorially invariant measure in the 

direction of the modal wave vector Kn. Although the wave numbers re™ are 

distributed isotropically in a sphere, the additional tensor scaling given by 

eq (8.66) accounts for the anisotropy of the flow. Indeed, dividing the wave 

number re™ by c™ tends to elongate wave numbers tha t are aligned with 

the largest component of the Reynolds-stress tensor. As an example, near 

the wall a larger u1ul implies a stronger correlation in the x direction and 

eddies are more elongated in x. Ideally, a Reynolds Stress Model (RSM) 

would provide the most accurate description of the Reynolds stress tensor. 

However, Bat ten et al. (2004) outlined tha t simpler model can be used. 

As an example, these authors used the cubic two-equation k — e model of 

Goldberg et al. [Goldberg et al, 1999]. The situation may be more prob-

lA(-ijk = 1 if {i,j,k} is an even permutation of {1,2 ,3}, to - 1 if {i,j,k} is an odd 
permutation of {1, 2, 3}and to 0 if {i,j, k} is not a permutation of {1, 2, 3}. 
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lematic if a one equation eddy viscosity model is used since the turbulent 
kinetic energy cannot be obtained directly from the model without addi­
tional modelling assumptions. Keating et al. [Keating et al., 2004] tested 
the synthetic turbulence generation method proposed by Batten et al. on a 
channel flow at a Reynolds number based on the channel half-height equal 
to Re = 6900. The number of modes N (see Eq. (8.63)) used to generate 
the synthetic field was 200. They obtained synthetic turbulence with a re­
alistic spectrum with significant energy content for scales larger than the 
integral length scale £.. However, a relatively long transition region (near 
205) was necessary to regenerate fully-developed turbulence. 

8.3.4 Synthetic turbulence 

Sandham, Yao et Lawal [Sandham et al., 2003] proposed a different tech­
nique to perform a synthetic reconstruction of the typical structures present 
in turbulent boundary layers. Their method is based on a more determin­
istic approach to define specific disturbances with prescribed phase infor­
mation into the inner- and outer-layer of the boundary layer. Indeed, the 
inner-layer is populated with low speed streaks while the outer layer is char­
acterized by large-scale coherent structures. At the inflow, the streamwise 
and wall-normal (denoted as ui'

mner, i = 1,2) components of the velocity 
fluctuations are used to represent lifted streaks of the inner-layer with a 
peak at a location of y~I-^ = 12. The outer layer fluctuations (denoted as 

u?ou er) represent three-dimensional vortices. The inner- and outer-layer 
fluctuations are given respectively by: 

U i -
m n e r = C i,ij/

+exp - Y sin (Wl£) cos ( A ^ + <!>!) i = l ,2 

pouter = <£citj ( - M ' e x p (- (^-)2) s i n K t ) c o s ( / 3 ^ + $ J) 

(8.67) 

where j = 1, 2, 3,4 are mode indices, y+ is the normalized wall coordinate, 
u)j denotes the forcing frequencies, j3j and &j are the spanwise wave num­
bers and associated phase shifts, respectively, and Cij are constants. Note 
that three modes are used to represent the largest structures of the outer 
layer. The parameters j3j and ujj are chosen to match the typical sizes of 
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the coherent structures present in the boundary layer. Finally, the spanwise 
component u3 is computed using the divergence free condition. In addition, 
a white noise was also added in the boundary layer zone with a maximum 
amplitude of 4% of the reference velocity. 

Based on the method developed by Sandham et al. [Sandham et al., 
2003], Terracol [Terracol, 2005] use the following boundary layer model to 
reconstruct streamwise and wall normal components of the velocity fluctu­
ations at the inflow: 

Ui = UO0 Y, Ci<J ( y ^ J ^P ( - ( yh* J J COS (/3jZ + ^ Sil1 ^ 

i = 1,2. (8.68) 

The first mode (j = 1) provides a model for the near wall streaks, while 
higher-order modes (j > 1) represent some larger structures encountered in 
the outer part of the boundary layer. The peak perturbation locations are 
respectively fixed to (y™ax) + = 12 and (y™ax) = (j - 1) S* where 6* is the 
displacement thickness at the inflow location. The amplitude coefficients 
have been tuned to match typical turbulent boundary layer turbulent stress 
profiles. The exponent rij has also been introduced to modify the envelope 
of the first mode, with ri\ = 1 - ~ (1 + tanh [10 (y - y™ax)}) and (rij). x = 
1. The values of each parameter used are detailed in Table 8.2. For this 
purpose, we introduce (in wall units) the spanwise spacing of the synthetic 
structures A+ = nJ-UT> and their life times T + = 7Ti-UT' where a denotes 
viscosity and uT the skin-friction velocity at the inflow. Note however that 
these values are case-dependent. 

The author evaluated the capabilities of different turbulence generation 
methods on the flow over a thin flat plate ended by a blunt trailing edge of 
thickness h. The Reynolds number based on the trailing edge thickness is 
Reh = 10000 and the Mach number is equal to 0.5. 

Table 8.2 Analytical TBL parameters 

3 

1 
2 
3 
4 

C l ^ 

15.2 
5.6 
5.6 
5.6 

c2 *& 
-5 

-2.8 
-2.8 
-2.8 

? max 

12 fl/Ur 

5* 
25* 
35* 

A+ 

100 
133 
200 
400 

T + 

100 
32 
58 
109 

<j>j 

0 
0.1 
0.2 
0.3 
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An initial LES on the whole configuration taking into account the 
boundary layer transition process was first performed to get a reference. 
In this initial calculation, the flat plate extents over 60/i and transition is 
located 45ft. upstream of the trailing edge. 

Then, a shorter computational domain located close to the trailing-
edge has been considered since the streamwise extent of the flat plate re­
gion has been reduced to llh. On this reduced domain, Terracol [Terracol, 
2005] performed three zonal LES calculations based on the NLDE approach 
(see Sec. 8.1.2). The first calculation (Zonal(a)) uses only the characteris­
tic boundary treatment at inflow while the second one (Zonal(b)) takes 
advantage of an additional recycling treatment for the perturbation (see 
Sec. 8.2.2) and the third one (Zonal(c)) relies on the use of the analytical 
model given by Eq. (8.68). 

For both zonal simulations accounting explicitly for turbulent fluctua­
tions at the inflow (Zonal(b) and Zonal(c)), the author observes a very good 
behavior. The three-dimensional features of the flow are well reproduced, 
as shown in Fig. 8.14, where the near-wall streaky structures are correctly 
re-generated. Figure 8.15 shows that for these two simulations, the velocity 
profiles agree pretty well with the reference LES, for both the mean and 
fluctuations profiles. However, it appears clearly that the zonal simulation 
performed without the adjunction of inflow disturbances (Zonal(a)) fails 
to reproduce the flow correctly, leading to a strong underestimation of the 
friction and turbulent fluctuations. 

The author also investigated the radiated acoustic field, by looking at 
the pressure spectrum above the trailing edge (see Fig. 8.16). It can be 
observed that the three zonal simulations provide a good representation of 
the main frequency peak, at a Strouhal number of St ~ 0.24. However, 
it can also be observed that simulation "Zonal(b)" introduces some spu­
rious energy in the high frequencies (St ~ 1). According to the author, 
this may be explained by the intrinsic nature of the recycling-based inflow 
condition, which introduces naturally its own recycling frequency in the 
flowfield. Based on this observation, the analytical inflow condition (simu­
lation "Zonal(c)") was finally retained to perform other calculations15. 

1 5In [Terracol, 2005], the author presented some first zonal simulations of the flow in 
the vicinity of the blunted trailing-edge of a NACA0012 airfoil, for a significant value of 
the chord-based Reynolds number (Rec = 2.86 x 106). 
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-N . , . - _ 

Fig. 8.14 3D view of the flow close to the trailing edge (simulation "Zonal(c)"). Terracol 
(2005). 

Fig. 8.15 Mean streamwisc (left) and rms (right) velocity profiles. Symbols: reference 
LES; dashed line: Zonal(a); dash-dotted line: Zonal(b); solid line: Zonal(c). Terracol 
(2005). 
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Fig. 8.16 Pressure spectrum at lOh above the trailing edge. Symbols: reference LES; 
dashed line: Zonal(a); dash-dotted line: Zonal(b); solid line: Zonal(c). Terracol (2005). 
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